Package 'scater'

March 30, 2021

Type Package

Version 1.18.6
Date 2021-02-26
License GPL-3
Title Single-Cell Analysis Toolkit for Gene Expression Data in R
Description A collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control and visualization.

Depends SingleCellExperiment, ggplot2
Imports stats, utils, methods, grid, gridExtra, Matrix, BiocGenerics, S4Vectors, SummarizedExperiment, DelayedArray, DelayedMatrixStats, BiocNeighbors, BiocSingular, BiocParallel, scuttle, rlang, ggbeeswarm, viridis

Suggests BiocStyle, biomaRt, cowplot, destiny, knitr, scRNAseq, robustbase, rmarkdown, Rtsne, uwot, NMF, testthat, pheatmap, Biobase

VignetteBuilder knitr
biocViews ImmunoOncology, SingleCell, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, DataImport, DataRepresentation, Infrastructure, Coverage

Encoding UTF-8

RoxygenNote 7.1.1
URL http://bioconductor.org/packages/scater/
BugReports https://support.bioconductor.org/
git_url https://git.bioconductor.org/packages/scater
git_branch RELEASE_3_12
git_last_commit 813 ccd 0
git_last_commit_date 2021-02-25
Date/Publication 2021-03-29
Author Davis McCarthy [aut],
Kieran Campbell [aut],
Aaron Lun [aut, ctb],
Quin Wills [aut],
Vladimir Kiselev [ctb],
Alan O'Callaghan [ctb, cre]
Maintainer Alan O'Callaghan alan.ocallaghan@outlook.com
R topics documented:
annotateBMFeatures 3
batchCorrectedAverages 4
bootstraps 6
calculateDiffusionMap 7
calculateMDS 10
calculateNMF 12
calculatePCA 15
calculateTSNE 19
calculateUMAP 22
defunct 26
getExplanatoryPCs 27
getVarianceExplained 28
ggcells 29
multiplot 31
nexprs 32
norm_exprs 34
plotColData 35
plotDots 36
plotExplanatoryPCs 38
plotExplanatory Variables 39
plotExpression 40
plotGroupedHeatmap 43
plotHeatmap 45
plotHighestExprs 47
plotPlatePosition 48
plotReducedDim 50
plotRLE 52
plotRowData 54
plotScater 55
Reduced dimension plots 56
retrieveCellInfo 58
retrieveFeatureInfo 60
runColDataPCA 61
runMultiUMAP 63
scater-pkg 65
scater-plot-args 65
SCESet 66
updateSCESet 67
Index 68

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage

```
annotateBMFeatures(
        ids,
    biomart = "ENSEMBL_MART_ENSEMBL",
    dataset = "mmusculus_gene_ensembl",
    id.type = "ensembl_gene_id",
    symbol.type,
    attributes = c(id.type, symbol.type, "chromosome_name", "gene_biotype",
            "start_position", "end_position"),
    filters = id.type,
    )
    getBMFeatureAnnos(x, ids = rownames(x), ...)
```


Arguments

ids A character vector containing feature identifiers.
biomart String defining the biomaRt to be used, to be passed to useMart.
dataset String defining the dataset to use, to be passed to useMart.
id.type String specifying the type of identifier in ids.
symbol.type String specifying the type of symbol to retrieve. If missing, this is set to "mgi_symbol" if dataset="mmusculus_gene_ensembl", or to "hgnc_symbol" if dataset="hsapiens_gene_ense
attributes Character vector defining the attributes to pass to getBM.
filters \quad String defining the type of identifier in ids, to be used as a filter in getBM.
... For annotateBMFeatures, further named arguments to pass to biomaRt: :useMart.
For getBMFeatureAnnos, further arguments to pass to annotateBMFeatures.
x A SingleCellExperiment object.

Details

These functions provide convenient wrappers around biomaRt to quickly obtain annotation in the required format.

Value

For annotateBMFeatures, a DataFrame containing feature annotation, with one row per value in ids.

For getBMFeatureAnnos, x is returned containing the output of annotateBMFeatures appended to its rowData.

Author(s)

Aaron Lun, based on code by Davis McCarthy

Examples

\#\# Not run:
\# Making up Ensembl IDs for demonstration purposes.
mock_id <- paste0("ENSMUSG", sprintf("\%011d", seq_len(1000)))
anno <- annotateBMFeatures(ids=mock_id)
\#\# End(Not run)

batchCorrectedAverages

Description

Compute an average statistic for each group in a manner that corrects for batch effects, by fitting a linear model and extracting the coefficients. This handles statistics such as the average logexpression or the proportion of cells with detected expression.

Usage

```
batchCorrectedAverages(
    x,
    group,
    block,
    transform = c("raw", "log", "logit"),
    offset = NULL
)
```


Arguments

$x \quad$ A numeric matrix containing statistics for each gene (row) and combination of group and block (column), computed by functions such as summarizeAssayByGroup - see Examples.
group A factor or vector specifying the group identity for each column of x, usually clusters or cell types.
block A factor or vector specifying the blocking level for each column of x, e.g., batch of origin.
transform String indicating how the differences between groups should be computed, for the batch adjustment.
offset Numeric scalar specifying the offset to use when difference="log" (default $1)$ or difference="logit" (default 0.01).

Details

This function considers group-level statistics such as the average expression of all cells or the proportion with detectable expression. These are helpful for any visualizations that operate on individual groups, e.g., plotGroupedHeatmap. However, if groups are distributed across multiple batches, some manner of batch correction is required. The problem with directly averaging group-level statistics across batches is that some groups may not exist in particular batches, e.g., due to the presence of unique cell types in different samples. A direct average would be biased by variable contributions of the batch effect for each group.

To overcome this, we use groups that are present in multiple batches to correct for the batch effect. (That is, any level of groups that occurs for multiple levels of block.) For each gene, we fit a linear model to the (transformed) values containing both the group and block factors. We then report the coefficient for each group as the batch-adjusted average for that group; this is possible as the fitted model has no intercept.
The default of transform="raw" will not transform the values, and is generally suitable for logexpression values. Setting transform="log" will perform a log-transformation after adding offset, and is suitable for normalized counts. Setting transform="logit" will perform a logit transformation after adding offset to the numerator and denominator (to shrink towards 0.5), and is suitable for proportional data such as the proportion of detected cells.
After the model is fitted to the transformed values, the reverse transformation is applied to the coefficients to obtain the batch-adjusted average. For transform="log", any negative values are coerced to zero, while for transform="logit", any values outside of $[0,1]$ are coerced to the closest boundary.

Value

A numeric matrix with number of rows equal to $n r o w(x)$ and number of columns equal to the number of unique levels in group. Each column corresponds to a group and contains the averaged statistic across batches.

Author(s)

Aaron Lun

See Also

plotGroupedHeatmap and plotDots, where this function gets used.
regressBatches from the batchelor package, to remove the batch effect from per-cell expression values.

Examples

```
y <- matrix(rnorm(10000), ncol=1000)
group <- sample(10, ncol(y), replace=TRUE)
block <- sample(5, ncol(y), replace=TRUE)
library(scuttle)
summaries <- summarizeAssayByGroup(y, DataFrame(group=group, block=block),
    statistics=c("mean", "prop.detected"))
# Computing batch-aware averages:
library(scater)
averaged <- batchCorrectedAverages(assay(summaries, "mean"),
```

```
    group=summaries$group, block=summaries$block)
num <- batchCorrectedAverages(assay(summaries, "prop.detected"),
    group=summaries$group, block=summaries$block, transform="logit")
```

| bootstraps | Accessor and replacement for bootstrap results in a
 SingleCellExperiment object | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated by the kallisto software for quantifying feature abundance). These functions conveniently access and replace the 'bootstrap' elements in the assays slot with the value supplied, which must be an matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment object as a whole.

Usage

```
bootstraps(object)
    bootstraps(object) <- value
    ## S4 method for signature 'SingleCellExperiment'
    bootstraps(object)
    ## S4 replacement method for signature 'SingleCellExperiment,array'
    bootstraps(object) <- value
```


Arguments

object a SingleCellExperiment object.
value an array of class "numeric" containing bootstrap expression values

Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values, otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)

Davis McCarthy

Examples

```
example_sce <- mockSCE()
bootstraps(example_sce)
```

calculateDiffusionMap Create a diffusion map from cell-level data

Description

Produce a diffusion map for the cells, based on the data in a SingleCellExperiment object.

Usage

```
calculateDiffusionMap(x, ...)
## S4 method for signature 'ANY'
calculateDiffusionMap(
        x,
        ncomponents = 2,
        ntop = 500,
        subset_row = NULL,
        scale = FALSE,
        transposed = FALSE,
    )
    ## S4 method for signature 'SummarizedExperiment'
    calculateDiffusionMap(x, ..., exprs_values = "logcounts")
    ## S4 method for signature 'SingleCellExperiment'
    calculateDiffusionMap(
        x,
        ...,
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
    )
    runDiffusionMap(x, ..., altexp = NULL, name = "DiffusionMap")
```


Arguments

$x \quad$ For calculateDiffusionMap, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix.
For runDiffusionMap, a SingleCellExperiment object.
... For the calculateDiffusionMap generic, additional arguments to pass to specific methods. For the ANY method, additional arguments to pass to DiffusionMap. For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
For runDiffusionMap, additional arguments to pass to calculateDiffusionMap.
ncomponents Numeric scalar indicating the number of diffusion components to obtain.
ntop \quad Numeric scalar specifying the number of features with the highest variances to use for dimensionality reduction.

subset_row	Vector specifying the subset of features to use for dimensionality reduction. This can be a character vector of row names, an integer vector of row indices or a logical vector.
scale	Logical scalar, should the expression values be standardized?
transposed	Logical scalar, is x transposed with cells in rows?
exprs_values	Integer scalar or string indicating which assay of x contains the expression val- ues.
dimred	String or integer scalar specifying the existing dimensionality reduction results to use.
n_dimred	Integer scalar or vector specifying the dimensions to use if dimred is specified. altexp
String or integer scalar specifying an alternative experiment containing the input data.	
name	String specifying the name to be used to store the result in the reducedDims of the output.

Details

The function DiffusionMap is used internally to compute the diffusion map. The behaviour of DiffusionMap seems to be non-deterministic, in a manner that is not responsive to any set. seed call. The reason for this is unknown.

Value

For calculateDiffusionMap, a matrix is returned containing the diffusion map coordinates for each cell (row) and dimension (column).

For runDiffusionMap, a modified x is returned that contains the diffusion map coordinates in reducedDim(x, name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.
The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.
If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.
If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms ($\mathrm{t}-\mathrm{SNE}$, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If $n _d i m r e d$ is also specified, only the first n _dimred columns are used. Alternatively, $n_{\text {_ dimred can }}$ be an integer vector specifying the column indices of the dimensions to use.
When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody tags.
Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

Haghverdi L, Buettner F, Theis FJ (2015). Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31(18), 2989-2998.

See Also

DiffusionMap, to perform the underlying calculations. plotDiffusionMap, to quickly visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runDiffusionMap(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```


Description

Perform multi-dimensional scaling (MDS) on cells, based on the data in a SingleCellExperiment object.

Usage

```
    calculateMDS(x, ...)
    ## S4 method for signature 'ANY'
    calculateMDS(
        x,
        ncomponents = 2,
        ntop = 500,
        subset_row = NULL,
        scale = FALSE,
        transposed = FALSE,
        method = "euclidean"
    )
    ## S4 method for signature 'SummarizedExperiment'
    calculateMDS(x, ..., exprs_values = "logcounts")
    ## S4 method for signature 'SingleCellExperiment'
    calculateMDS(
        x,
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
    )
    runMDS(x, ..., altexp = NULL, name = "MDS")
```


Arguments

X
For calculateMDS, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix. For runMDS, a SingleCellExperiment object.
... For the calculateMDS generic, additional arguments to pass to specific methods. For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method. For runMDS, additional arguments to pass to calculateMDS.
ncomponents Numeric scalar indicating the number of MDS?g dimensions to obtain.
ntop \quad Numeric scalar specifying the number of features with the highest variances to use for dimensionality reduction.

subset_row	Vector specifying the subset of features to use for dimensionality reduction. This can be a character vector of row names, an integer vector of row indices or a logical vector.
scale	Logical scalar, should the expression values be standardized?
transposed	Logical scalar, is x transposed with cells in rows?
method	String specifying the type of distance to be computed between cells. Integer scalar or string indicating which assay of x contains the expression val- ues.
exprs_values	
dimred	String or integer scalar specifying the existing dimensionality reduction results to use.
n_dimred	Integer scalar or vector specifying the dimensions to use if dimred is specified. altexp
String or integer scalar specifying an alternative experiment containing the input data.	
name	String specifying the name to be used to store the result in the reducedDims of the output.

Details

The function cmdscale is used internally to compute the MDS components.

Value

For calculateMDS, a matrix is returned containing the MDS coordinates for each cell (row) and dimension (column).

For runMDS, a modified x is returned that contains the MDS coordinates in reducedDim(x, name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.
The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.
If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below $1 \mathrm{e}-8$.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If n _dimred is also
specified, only the first $n_{\text {_ }}$ dimred columns are used. Alternatively, $\mathrm{n}_{\mathbf{\prime}}$ dimred can be an integer vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp (x, altexp), e.g., antibody tags.

Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

cmdscale, to perform the underlying calculations. plotMDS, to quickly visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runMDS(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```

```
calculateNMF Perform NMF on cell-level data
```


Description

Perform non-negative matrix factorization (NMF) for the cells, based on the data in a SingleCellExperiment object.

Usage

```
calculateNMF(x, ...)
## S4 method for signature 'ANY'
calculateNMF(
    x,
    ncomponents = 2,
    ntop = 500,
    subset_row = NULL,
    scale = FALSE,
    transposed = FALSE,
    )
    ## S4 method for signature 'SummarizedExperiment'
    calculateNMF(x, ..., exprs_values = "logcounts")
    ## S4 method for signature 'SingleCellExperiment'
    calculateNMF(
        x,
        ...,
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
    )
    runNMF(x, ..., altexp = NULL, name = "NMF")
```


Arguments

$x \quad$ For calculateNMF, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix.
For runNMF, a SingleCellExperiment object.
... For the calculateNMF generic, additional arguments to pass to specific methods. For the ANY method, additional arguments to pass to Rtsne. For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
For runNMF, additional arguments to pass to calculateNMF.
ncomponents Numeric scalar indicating the number of NMF dimensions to obtain.
ntop \quad Numeric scalar specifying the number of features with the highest variances to use for dimensionality reduction.
subset_row Vector specifying the subset of features to use for dimensionality reduction. This can be a character vector of row names, an integer vector of row indices or a logical vector.
scale Logical scalar, should the expression values be standardized?
transposed Logical scalar, is x transposed with cells in rows?
exprs_values Integer scalar or string indicating which assay of x contains the expression values.

dimred	String or integer scalar specifying the existing dimensionality reduction results to use.
n_dimred	Integer scalar or vector specifying the dimensions to use if dimred is specified.
altexp	String or integer scalar specifying an alternative experiment containing the input data.
name	String specifying the name to be used to store the result in the reducedDims of the output.

Details

The function nmf is used internally to compute the NMF. Note that the algorithm is not deterministic, so different runs of the function will produce differing results. Users are advised to test multiple random seeds, and then use set. seed to set a random seed for replicable results.

Value

For calculateNMF, a numeric matrix is returned containing the NMF coordinates for each cell (row) and dimension (column).

For runNMF, a modified x is returned that contains the NMF coordinates in reducedDim(x, name).
In both cases, the matrix will have the attribute "basis" containing the gene-by-factor basis matrix.

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If $n _d i m r e d$ is also specified, only the first $n _d i m r e d$ columns are used. Alternatively, $n _d i m r e d$ can be an integer vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody tags.
Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun

See Also

nmf , for the underlying calculations.
plotNMF, to quickly visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runNMF(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```


calculatePCA Perform PCA on expression data

Description

Perform a principal components analysis (PCA) on cells, based on the expression data in a SingleCellExperiment object.

Usage

```
calculatePCA(x, ...)
## S4 method for signature 'ANY'
calculatePCA(
        x,
        ncomponents = 50,
        ntop = 500,
        subset_row = NULL,
        scale = FALSE,
        transposed = FALSE,
        BSPARAM = bsparam(),
        BPPARAM = SerialParam()
)
## S4 method for signature 'SummarizedExperiment'
calculatePCA(x, ..., exprs_values = "logcounts")
## S4 method for signature 'SingleCellExperiment'
calculatePCA(
        x,
        ...,
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
)
## S4 method for signature 'SingleCellExperiment'
runPCA(x, ..., altexp = NULL, name = "PCA")
```


Arguments

$x \quad$ For calculatePCA, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix.
For runPCA, a SingleCellExperiment object containing such a matrix.
... For the calculatePCA generic, additional arguments to pass to specific methods. For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
For runPCA, additional arguments to pass to calculatePCA.
ncomponents Numeric scalar indicating the number of principal components to obtain.
ntop \quad Numeric scalar specifying the number of features with the highest variances to use for dimensionality reduction.
subset_row Vector specifying the subset of features to use for dimensionality reduction. This can be a character vector of row names, an integer vector of row indices or a logical vector.
scale Logical scalar, should the expression values be standardized?
transposed Logical scalar, is x transposed with cells in rows?
BSPARAM A BiocSingularParam object specifying which algorithm should be used to perform the PCA.

BPPARAM	A BiocParallelParam object specifying whether the PCA should be parallelized.
exprs_values	Integer scalar or string indicating which assay of x contains the expression val- ues.
dimred	String or integer scalar specifying the existing dimensionality reduction results to use.
n_dimred	Integer scalar or vector specifying the dimensions to use if dimred is specified.
altexp	String or integer scalar specifying an alternative experiment containing the input data.
name	String specifying the name to be used to store the result in the reducedDims of the output.

Details

Fast approximate SVD algorithms like BSPARAM=IrlbaParam() or RandomParam() use a random initialization, after which they converge towards the exact PCs. This means that the result will change slightly across different runs. For full reproducibility, users should call set. seed prior to running runPCA with such algorithms. (Note that this includes BSPARAM=bsparam(), which uses approximate algorithms by default.)

Value

For calculatePCA, a numeric matrix of coordinates for each cell (row) in each of ncomponents PCs (column).

For runPCA, a SingleCellExperiment object is returned containing this matrix in reducedDims(. . . , name).
In both cases, the attributes of the PC coordinate matrix contain the following elements:

- "percentVar", the percentage of variance explained by each PC. This may not sum to 100 if not all PCs are reported.
- "varExplained", the actual variance explained by each PC.
- "rotation", the rotation matrix containing loadings for all genes used in the analysis and for each PC.

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below $1 \mathrm{e}-8$.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms (t -SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also specified, only the first n _dimred columns are used. Alternatively, n _dimred can be an integer vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp(x, altexp), e.g., antibody tags.
Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

runPCA, for the underlying calculations. plotPCA, to conveniently visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```

```
calculateTSNE Perform t-SNE on cell-level data
```


Description

Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCellExperiment object.

Usage

```
calculateTSNE(x, ...)
## S4 method for signature 'ANY'
calculateTSNE(
        x,
        ncomponents = 2,
        ntop = 500,
        subset_row = NULL,
        scale = FALSE,
        transposed = FALSE,
        perplexity = NULL,
        normalize = TRUE,
        theta = 0.5,
        num_threads = NULL,
        ...,
        external_neighbors = FALSE,
        BNPARAM = KmknnParam(),
        BPPARAM = SerialParam()
    )
    ## S4 method for signature 'SummarizedExperiment'
    calculateTSNE(x, ..., exprs_values = "logcounts")
    ## S4 method for signature 'SingleCellExperiment'
    calculateTSNE(
        x,
        pca = is.null(dimred),
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
    )
    runTSNE(x, ..., altexp = NULL, name = "TSNE")
```


Arguments

x
For calculateTSNE, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix.
For runTSNE, a SingleCellExperiment object.

...	For the calculateTSNE generic, additional arguments to pass to specific meth- ods. For the ANY method, additional arguments to pass to Rtsne. For the Sum- marizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
For runTSNE, additional arguments to pass to calculateTSNE.	

Details

The function Rtsne is used internally to compute the t -SNE. Note that the algorithm is not deterministic, so different runs of the function will produce differing results. Users are advised to test multiple random seeds, and then use set. seed to set a random seed for replicable results.

The value of the perplexity parameter can have a large effect on the results. By default, the function will set a "reasonable" perplexity that scales with the number of cells in x. (Specifically, it
is the number of cells divided by 5 , capped at a maximum of 50 .) However, it is often worthwhile to manually try multiple values to ensure that the conclusions are robust.

If external_neighbors=TRUE, the nearest neighbor search step will use a different algorithm to that in the Rtsne function. This can be parallelized or approximate to achieve greater speed for large data sets. The neighbor search results are then used for t -SNE via the Rtsne_neighbors function.

If dimred is specified, the PCA step of the Rtsne function is automatically turned off by default. This presumes that the existing dimensionality reduction is sufficient such that an additional PCA is not required.

Value

For calculateTSNE, a numeric matrix is returned containing the t -SNE coordinates for each cell (row) and dimension (column).

For runTSNE, a modified x is returned that contains the t -SNE coordinates in reducedDim(x , name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x, dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If n_{-}dimred is also specified, only the first n _dimred columns are used. Alternatively, $n_{\text {_ dimred can }}$ be an integer vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp (x, altexp), e.g., antibody tags.

Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

van der Maaten LJP, Hinton GE (2008). Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 9, 2579-2605.

See Also

Rtsne, for the underlying calculations. plotTSNE, to quickly visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runTSNE(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```

 calculateUMAP Perform UMAP on cell-level data

Description

Perform uniform manifold approximation and projection (UMAP) for the cells, based on the data in a SingleCellExperiment object.

Usage

```
calculateUMAP(x, ...)
## S4 method for signature 'ANY'
calculateUMAP(
        x,
        ncomponents = 2,
        ntop = 500,
        subset_row = NULL,
        scale = FALSE,
        transposed = FALSE,
        pca = if (transposed) NULL else 50,
        n_neighbors = 15,
        n_threads = NULL,
        ...,
        external_neighbors = FALSE,
        BNPARAM = KmknnParam(),
        BPPARAM = SerialParam()
    )
    ## S4 method for signature 'SummarizedExperiment'
calculateUMAP(x, ..., exprs_values = "logcounts")
## S4 method for signature 'SingleCellExperiment'
calculateUMAP(
        x,
        ...,
        pca = if (!is.null(dimred)) NULL else 50,
        exprs_values = "logcounts",
        dimred = NULL,
        n_dimred = NULL
)
runUMAP(x, ..., altexp = NULL, name = "UMAP")
```


Arguments

$x \quad$ For calculateUMAP, a numeric matrix of log-expression values where rows are features and columns are cells. Alternatively, a SummarizedExperiment or SingleCellExperiment containing such a matrix.
For runTSNE, a SingleCellExperiment object containing such a matrix.
... For the calculateUMAP generic, additional arguments to pass to specific methods. For the ANY method, additional arguments to pass to umap. For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
For runUMAP, additional arguments to pass to calculateUMAP.
ncomponents Numeric scalar indicating the number of UMAP dimensions to obtain.
ntop \quad Numeric scalar specifying the number of features with the highest variances to use for dimensionality reduction.
subset_row Vector specifying the subset of features to use for dimensionality reduction. This can be a character vector of row names, an integer vector of row indices or a
logical vector.
scale Logical scalar, should the expression values be standardized?
transposed Logical scalar, is x transposed with cells in rows?
pca Integer scalar specifying how many PCs should be used as input into the UMAP algorithm. By default, no PCA is performed if the input is a dimensionality reduction result.
n_neighbors Integer scalar, number of nearest neighbors to identify when constructing the initial graph.
n_threads Integer scalar specifying the number of threads to use in umap. If NULL and BPPARAM is a MulticoreParam, it is set to the number of workers in BPPARAM; otherwise, the umap defaults are used.
external_neighbors
Logical scalar indicating whether a nearest neighbors search should be computed externally with findKNN.
BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.
exprs_values Integer scalar or string indicating which assay of x contains the expression values.
dimred String or integer scalar specifying the existing dimensionality reduction results to use.
n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.
altexp String or integer scalar specifying an alternative experiment containing the input data.
name \quad String specifying the name to be used to store the result in the reducedDims of the output.

Details

The function umap is used internally to compute the UMAP. Note that the algorithm is not deterministic, so different runs of the function will produce differing results. Users are advised to test multiple random seeds, and then use set. seed to set a random seed for replicable results.
If external_neighbors=TRUE, the nearest neighbor search is conducted using a different algorithm to that in the umap function. This can be parallelized or approximate to achieve greater speed for large data sets. The neighbor search results are then used directly to create the UMAP embedding.

Value

For calculateUMAP, a matrix is returned containing the UMAP coordinates for each cell (row) and dimension (column).

For runUMAP, a modified x is returned that contains the UMAP coordinates in reducedDim(x, name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally compute the variances from the expression values without considering any mean-variance trend, so often a more considered choice of genes is possible, e.g., with scran functions. Note that the value of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity. This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction results in x by setting the dimred argument. This is typically used to run slower non-linear algorithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default, all dimensions are used to compute the second set of reduced dimensions. If $n _d i m r e d$ is also specified, only the first n _dimred columns are used. Alternatively, $n _d i m r e d$ can be an integer vector specifying the column indices of the dimensions to use.
When dimred is specified, no additional feature selection or standardization is performed. This means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns as the variables/diemnsions. This allows users to manually pass in dimensionality reduction results without needing to wrap them in a SingleCellExperiment. As such, no feature selection or standardization is performed, i.e., ntop, subset_row and scale are ignored

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the method is run on data from an alternative SummarizedExperiment nested within x. This is useful for performing dimensionality reduction on other features stored in altExp (x, altexp), e.g., antibody tags.
Setting altexp with exprs_values will use the specified assay from the alternative SummarizedExperiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified dimensionality reduction results from the alternative. This option will also interact as expected with n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is advisable to use a different name to distinguish this output from the results generated from the main experiment's assay values.

Author(s)

Aaron Lun

References

McInnes L, Healy J, Melville J (2018). UMAP: uniform manifold approximation and projection for dimension reduction. arXiv.

See Also

umap, for the underlying calculations.
plotUMAP, to quickly visualize the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runUMAP(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))
```

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

Usage

```
calculateQCMetrics(...)
## S4 method for signature 'SingleCellExperiment'
normalize(object, ...)
centreSizeFactors(...)
```


Arguments

object, ... Ignored arguments.

Details

calculateQCMetrics is succeeded by perCellQCMetrics and perFeatureQCMetrics. normalize is succeeded by logNormCounts.
centreSizeFactors has no replacement - the SingleCellExperiment is removing support for multiple size factors, so this function is now trivial.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Author(s)

Aaron Lun

Examples

try(calculateQCMetrics())

```
getExplanatoryPCs Per-PC variance explained by a variable
```


Description

Compute, for each principal component, the percentage of variance that is explained by one or more variables of interest.

Usage

getExplanatoryPCs(x, dimred $=$ "PCA", n_dimred $=10, \ldots$)

Arguments

x
A SingleCellExperiment object containing dimensionality reduction results.
dimred String or integer scalar specifying the field in reducedDims (x) that contains the PCA results.
n_dimred Integer scalar specifying the number of the top principal components to use.
... Additional arguments passed to getVarianceExplained.

Details

This function computes the percentage of variance in PC scores that is explained by variables in the sample-level metadata. It allows identification of important PCs that are driven by known experimental conditions, e.g., treatment, disease. PCs correlated with technical factors (e.g., batch effects, library size) can also be detected and removed prior to further analysis.

By default, the function will attempt to use pre-computed PCA results in object. This is done by taking the top n_dimred PCs from the matrix specified by dimred. If these are not available or if rerun=TRUE, the function will rerun the PCA using runPCA; however, this mode is deprecated and users are advised to explicitly call runPCA themselves.

Value

A matrix containing the percentage of variance explained by each factor (column) and for each PC (row).

Author(s)

Aaron Lun

See Also

plotExplanatoryPCs, to plot the results.
getVarianceExplained, to compute the variance explained.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)
r2mat <- getExplanatoryPCs(example_sce)
```

getVarianceExplained Per-gene variance explained by a variable

Description

Compute, for each gene, the percentage of variance that is explained by one or more variables of interest.

Usage

```
getVarianceExplained(x, ...)
## S4 method for signature 'ANY'
getVarianceExplained(x, variables, subset_row = NULL)
## S4 method for signature 'SummarizedExperiment'
getVarianceExplained(x, variables = NULL, ..., exprs_values = "logcounts")
```


Arguments

x	A numeric matrix of expression values, usually log-transformed and normalized. Alternatively, a SummarizedExperiment containing such a matrix.
\ldots	For the generic, arguments to be passed to specific methods. For the Summa- rizedExperiment method, arguments to be passed to the ANY method.
variables	A DataFrame or data.frame containing one or more variables of interest. This should have number of rows equal to the number of columns in x.
	For the SummarizedExperiment method, this can also be a character vector spec- ifying column names of colData (x$)$ to use; or NULL, in which case all columns in colData (x) are used.
subset_row	A vector specifying the subset of rows of x for which to return a result. exprs_valuesString or integer scalar specifying the expression values for which to compute the variance.

Details

This function computes the percentage of variance in gene expression that is explained by variables in the sample-level metadata. It allows problematic factors to be quickly identified, as well as the genes that are most affected.

Value

A numeric matrix containing the percentage of variance explained by each factor (column) and for each gene (row).

Author(s)

Aaron Lun

See Also

getExplanatoryPCs, which calls this function.
plotExplanatoryVariables, to plot the results.

Examples

```
example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
r2mat <- getVarianceExplained(example_sce)
```

```
ggcells

\section*{Description}

Create a base ggplot object from a SingleCellExperiment, the contents of which can be directly referenced in subsequent layers without prior specification.

\section*{Usage}
```

ggcells(
x,
mapping = aes(),
features = NULL,
exprs_values = "logcounts",
use_dimred = TRUE,
use_altexps = FALSE,
prefix_altexps = FALSE,
check_names = TRUE,
extract_mapping = TRUE,
...
)
ggfeatures(
x,
mapping = aes(),
cells = NULL,
exprs_values = "logcounts",
check_names = TRUE,
extract_mapping = TRUE,
)

```

\section*{Arguments}
x
A SingleCellExperiment object. This is expected to have row names for ggcells and column names for ggfeatures.
mapping A list containing aesthetic mappings, usually the output of aes or related functions.
features Character vector specifying the features for which to extract expression profiles across cells. May also include features in alternative Experiments if permitted by use_altexps.
exprs_values Soft-deprecated equivalents of the arguments described above.
use_dimred Soft-deprecated equivalents of the arguments described above.
use_altexps Soft-deprecated equivalents of the arguments described above.
prefix_altexps Soft-deprecated equivalents of the arguments described above.
check_names Soft-deprecated equivalents of the arguments described above.
extract_mapping
Logical scalar indicating whether features or cells should be automatically expanded to include variables referenced in mapping.
... Further arguments to pass to ggplot.
cells Character vector specifying the features for which to extract expression profiles across cells.

\section*{Details}

These functions generate a data.frame from the contents of a SingleCellExperiment and pass it to ggplot. Rows, columns or metadata fields in the x can then be referenced in subsequent ggplot2 commands.
ggcells treats cells as the data values so users can reference row names of \(x\) (if provided in features), column metadata variables and dimensionality reduction results. They can also reference row names and metadata variables for alternative Experiments.
ggfeatures treats features as the data values so users can reference column names of \(x\) (if provided in cells) and row metadata variables.
If mapping is supplied, the function will automatically expand features or cells for any features or cells requested in the mapping. This is convenient as features/cells do not have to specified twice (once in data.frame construction and again in later geom or stat layers). Developers may wish to turn this off with extract_mapping=FALSE for greater control.

\section*{Value}

A ggplot object containing the specified contents of x .

\section*{Author(s)}

Aaron Lun

\section*{See Also}
makePerCellDF and makePerFeatureDF, for the construction of the data.frame.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)
ggcells(example_sce, aes(x=PCA.1, y=PCA.2, color=Gene_0001)) +
geom_point()
ggcells(example_sce, aes(x=Mutation_Status, y=Gene_0001)) +
geom_violin() +
facet_wrap(~Cell_Cycle)
rowData(example_sce)\$GC <- runif(nrow(example_sce))
ggfeatures(example_sce, aes(x=GC, y=Cell_001)) +
geom_point() +
stat_smooth()

```
```

multiplot

```

Multiple plot function for ggplot2 plots

\section*{Description}

Place multiple ggplot plots on one page. This function is deprecated in favour of grid.arrange. It will be defunct in the next release.

\section*{Usage}
multiplot(..., plotlist \(=\) NULL, cols = 1, layout \(=\) NULL)

\section*{Arguments}
... One or more ggplot objects.
plotlist A list of ggplot objects, as an alternative to ....
cols A numeric scalar giving the number of columns in the layout.
layout A matrix specifying the layout. If present, cols is ignored.

\section*{Details}

If the layout is something like matrix \((c(1,2,3,3)\), nrow= 2 , byrow=TRUE), then:
- plot 1 will go in the upper left;
- plot 2 will go in the upper right;
- and plot 3 will go all the way across the bottom.

There is no way to tweak the relative heights or widths of the plots with this simple function. It was adapted from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2) /

\section*{Value}

A ggplot object if one plot is supplied, otherwise an object of class "gtable" returned by grid. arrange.

\section*{Examples}
```

library(ggplot2)

This example uses the ChickWeight dataset, which comes with ggplot2

First plot

p1 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet, group = Chick)) +
geom_line() +
ggtitle("Growth curve for individual chicks")

Second plot

p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +
geom_point(alpha = .3) +
geom_smooth(alpha = .2, size = 1) +
ggtitle("Fitted growth curve per diet")

Third plot

p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, colour = Diet)) +
geom_density() +
ggtitle("Final weight, by diet")

Fourth plot

p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, fill = Diet)) +
geom_histogram(colour = "black", binwidth = 50) +
facet_grid(Diet ~ .) +
ggtitle("Final weight, by diet") +
theme(legend.position = "none") \# No legend (redundant in this graph)

Not run:

 ## Combine plots and display
 multiplot(p1, p2, p3, p4, cols = 2)
 g <- multiplot(p1, p2, p3, p4, cols = 2)
 grid::grid.draw(g)

End(Not run)

```
nexprs

\section*{Description}

Counting the number of non-zero counts in each row (per feature) or column (per cell).

\section*{Usage}
```

nexprs(x, ...)

S4 method for signature 'ANY'

nexprs(
x,
byrow = FALSE,
detection_limit = 0,
subset_row = NULL,
subset_col = NULL,
BPPARAM = SerialParam()

```
)
```


S4 method for signature 'SummarizedExperiment'

nexprs(x, ..., exprs_values = "counts")

```

\section*{Arguments}
\(x \quad\) A numeric matrix of counts where features are rows and cells are columns. Alternatively, a SummarizedExperiment containing such counts.
... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY method.
byrow Logical scalar indicating whether to count the number of detected cells per feature. If FALSE, the function will count the number of detected features per cell.
detection_limit
Numeric scalar providing the value above which observations are deemed to be expressed.
subset_row Logical, integer or character vector indicating which rows (i.e. features) to use.
subset_col Logical, integer or character vector indicating which columns (i.e., cells) to use.
BPPARAM A BiocParallelParam object specifying whether the calculations should be parallelized. Only relevant when \(x\) is a DelayedMatrix.
exprs_values String or integer specifying the assay of \(x\) to obtain the count matrix from.

\section*{Value}

An integer vector containing counts per gene or cell, depending on the provided arguments.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
numDetectedAcrossFeatures and numDetectedAcrossCells, to do this calculation for each group of features or cells, respectively.

\section*{Examples}
```

example_sce <- mockSCE()
nexprs(example_sce)[1:10]
nexprs(example_sce, byrow = TRUE)[1:10]

```
```

norm_exprs

```

Additional accessors for the typical elements of a SingleCellExperiment object.

\section*{Description}

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

\section*{Usage}
norm_exprs(object)
norm_exprs(object) <- value
stand_exprs(object)
stand_exprs(object) <- value
fpkm(object)
fpkm(object) <- value

\section*{Arguments}
object SingleCellExperiment class object from which to access or to which to assign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The following are imported from SingleCellExperiment: "counts", "normcounts", "logcounts", "cpm", "tpm".
value a numeric matrix (e.g. for exprs)

\section*{Value}
a matrix of normalised expression data
a matrix of standardised expressiond data
a matrix of FPKM values
A matrix of numeric, integer or logical values.

\section*{Author(s)}

Davis McCarthy

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) \# identical to logcounts()
norm_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)
stand_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)

```
```

tpm(example_sce) <- calculateTPM(example_sce, lengths = 5e4)
cpm(example_sce) <- calculateCPM(example_sce)
fpkm(example_sce)

```
plotColData Plot column metadata

\section*{Description}

Plot column-level (i.e., cell) metadata in an SingleCellExperiment object.

\section*{Usage}
```

plotColData(
object,
y,
x = NULL,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts",
other_fields = list(),
swap_rownames = NULL,
)

```

\section*{Arguments}
object A SingleCellExperiment object containing expression values and experimental information.
y String specifying the column-level metadata field to show on the y -axis. Alternatively, an AsIs vector or data.frame, see ?retrieveCellInfo.
\(x \quad\) String specifying the column-level metadata to show on the \(x\)-axis. Alternatively, an AsIs vector or data.frame, see ?retrieveCellInfo. If NULL, nothing is shown on the x -axis.
colour_by Specification of a column metadata field or a feature to colour by, see the by argument in ?retrieveCellInfo for possible values.
shape_by Specification of a column metadata field or a feature to shape by, see the by argument in ?retrieveCellInfo for possible values.
size_by Specification of a column metadata field or a feature to size by, see the by argument in ?retrieveCellInfo for possible values.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values from, for use in point aesthetics - see ?retrieveCellInfo for details.
other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args" for details.
swap_rownames Column name of rowData(object) to be used to identify features instead of rownames (object) when labelling plot elements.
... Additional arguments for visualization, see ?"scater-plot-args" for details.

\section*{Details}

If \(y\) is continuous and \(x=N U L L\), a violin plot is generated. If \(x\) is categorical, a grouped violin plot will be generated, with one violin for each level of \(x\). If \(x\) is continuous, a scatter plot will be generated.
If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where the area of a rectangle is proportional to the number of points for a combination of factors.

\section*{Value}

A ggplot object.

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
colData(example_sce) <- cbind(colData(example_sce),
perCellQCMetrics(example_sce))
plotColData(example_sce, y = "detected", x = "sum",
colour_by = "Mutation_Status") + scale_x_log10()
plotColData(example_sce, y = "detected", x = "sum",
colour_by = "Mutation_Status", size_by = "Gene_0001",
shape_by = "Treatment") + scale_x_log10()
plotColData(example_sce, y = "Treatment", x = "sum",
colour_by = "Mutation_Status") + scale_y_log10() \# flipped violin.
plotColData(example_sce, y = "detected",
x = "Cell_Cycle", colour_by = "Mutation_Status")

```
```

plotDots Create a dot plot of expression values

```

\section*{Description}

Create a dot plot of expression values for a grouping of cells, where the size and color of each dot represents the proportion of detected expression values and the average expression, respectively, for each feature in each group of cells.

\section*{Usage}
plotDots( object, features, group \(=\) NULL,
```

 block = NULL,
 exprs_values = "logcounts",
 detection_limit = 0,
 low_color = "white",
 high_color = "red",
 max_ave = NULL,
 max_detected = NULL,
 other_fields = list(),
 by_exprs_values = exprs_values,
 swap_rownames = NULL
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A SingleCellExperiment object. \\
features & \begin{tabular}{l} 
A character vector of feature names to show as rows of the dot plot.
\end{tabular} \\
group & \begin{tabular}{l} 
Specification of a column metadata field to show as columns. Alternatively, an \\
AsIs vector, see ?retrieveCellInfo for details.
\end{tabular} \\
block & \begin{tabular}{l} 
Specification of a column metadata field containing the blocking factors, e.g., \\
batch of origin for each cell. Alternatively, an AsIs vector, see ?retrieveCellInfo \\
for details.
\end{tabular} \\
exprs_values & \begin{tabular}{l} 
A string or integer scalar specifying which assay in assays (object) to obtain \\
expression values from.
\end{tabular} \\
detection_limit
\end{tabular}

\section*{Details}

This implements a Seurat-style "dot plot" that creates a dot for each feature (row) in each group of cells (column). The proportion of detected expression values and the average expression for each feature in each group of cells is visualized efficiently using the size and colour, respectively, of each dot. If block is specified, batch-corrected averages for each group are computed with batchCorrectedAverages.

We impose two restrictions - the low end of the color scale must correspond to the detection limit, and the color at this end of the scale must be the same as the background color. These ensure that
the visual cues from low average expression or low detected proportions are consistent, as both will result in a stronger low_color. (In the latter case, the reduced size of the dot means that the background color dominates.)

If these restrictions are violated, visualization can be misleading due to the difficulty of simultaneously interpreting both size and color. For example, if we colored by z-score on a conventional blue-white-red color axis, a gene that is downregulated in a group of cells would show up as a small blue dot. If the background color was also white, this might be mistaken for a gene that is not downregulated at all. On the other hand, any other background color would effectively require consideration of two color axes as expression decreases.

We can also cap the color and size scales at max_ave and max_detected, respectively. This aims to preserve resolution for low-abundance genes by preventing domination of the scales by highabundance features.

\section*{Value}

A ggplot object containing a dot plot.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
plotExpression and plotHeatmap, for alternatives to visualizing group-level expression values.

\section*{Examples}
```

sce <- mockSCE()
sce <- logNormCounts(sce)
plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle")
plotDots(sce, features=rownames(sce)[1:10], group="Treatment", block="Cell_Cycle")

```
```

plotExplanatoryPCs Plot the explanatory PCs for each variable

```

\section*{Description}

Plot the explanatory PCs for each variable

\section*{Usage}
```

plotExplanatoryPCs(
object,
nvars_to_plot = 10,
npcs_to_plot = 50,
theme_size = 10,
)

```

\section*{Arguments}
object A SingleCellExperiment object containing expression values and experimental information. Alternatively, a matrix containing the output of getExplanatoryPCs.
nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory power to plot. This can be set to Inf to show all variables.
npcs_to_plot Integer scalar specifying the number of PCs to plot.
theme_size numeric scalar providing base font size for ggplot theme.
.. . Parameters to be passed to getExplanatoryPCs.

\section*{Details}

A density plot is created for each variable, showing the R-squared for each successive PC (up to npcs_to_plot PCs). Only the nvars_to_plot variables with the largest maximum R-squared across PCs are shown.

If object is a SingleCellExperiment object, getExplanatoryPCs will be called to compute the variance in expression explained by each variable in each gene. Users may prefer to run getExplanatoryPCs manually and pass the resulting matrix as object, in which case the R -squared values are used directly.

\section*{Value}

A ggplot object.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)
plotExplanatoryPCs(example_sce)

```
```

plotExplanatoryVariables

```

Plot explanatory variables ordered by percentage of variance explained

\section*{Description}

Plot explanatory variables ordered by percentage of variance explained

\section*{Usage}
```

plotExplanatoryVariables(

```
    object,
    nvars_to_plot \(=10\),
    min_marginal_r2 = 0,
    theme_size = 10,
)

\section*{Arguments}
```

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getVarianceExplained.
nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.
min_marginal_r2
Numeric scalar specifying the minimal value required for median marginal R-
squared for a variable to be plotted. Only variables with a median marginal
R-squared strictly larger than this value will be plotted.
theme_size Numeric scalar specifying the font size to use for the plotting theme
... Parameters to be passed to getVarianceExplained.

```

\section*{Details}

A density plot is created for each variable, showing the distribution of R-squared across all genes. Only the nvars_to_plot variables with the largest median R -squared across genes are shown. Variables are also only shown if they have median R-squared values above min_marginal_r2.

If object is a SingleCellExperiment object, getVarianceExplained will be called to compute the variance in expression explained by each variable in each gene. Users may prefer to run getVarianceExplained manually and pass the resulting matrix as object, in which case the Rsquared values are used directly.

\section*{Value}

A ggplot object.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
plotExplanatoryVariables(example_sce)

```
```

plotExpression Plot expression values for all cells

```

\section*{Description}

Plot expression values for a set of features (e.g. genes or transcripts) in a SingleExperiment object, against a continuous or categorical covariate for all cells.

\section*{Usage}
plotExpression(
object,
features,
x = NULL,
exprs_values = "logcounts",
log2_values = FALSE,
colour_by = NULL,
shape_by = NULL,
```

 size_by = NULL,
 by_exprs_values = exprs_values,
 xlab = NULL,
 feature_colours = TRUE,
 one_facet = TRUE,
 ncol = 2,
 scales = "fixed",
 other_fields = list(),
 swap_rownames = NULL,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & \begin{tabular}{l} 
A SingleCellExperiment object containing expression values and other meta- \\
data.
\end{tabular} \\
features & \begin{tabular}{l} 
A character vector or a list specifying the features to plot. If a list is supplied, \\
each entry of the list can be a string, an AsIs-wrapped vector or a data.frame - \\
see ?retrieveCellInfo.
\end{tabular} \\
x & \begin{tabular}{l} 
Specification of a column metadata field or a feature to show on the x-axis, see \\
the by argument in ?retrieveCellInfo for possible values. \\
A string or integer scalar specifying which assay in assays (object) to obtain \\
expression values from.
\end{tabular} \\
exprs_values
\end{tabular}
swap_rownames Column name of rowData(object) to be used to identify features instead of rownames (object) when labelling plot elements.

Additional arguments for visualization, see ?"scater-plot-args" for details.

\section*{Details}

This function plots expression values for one or more features. If x is not specified, a violin plot will be generated of expression values. If \(x\) is categorical, a grouped violin plot will be generated, with one violin for each level of x . If x is continuous, a scatter plot will be generated.

If multiple features are requested and \(x\) is not specified and one_facet=TRUE, a grouped violin plot will be generated with one violin per feature. This will be coloured by feature if colour_by=NULL and feature_colours=TRUE, to yield a more aesthetically pleasing plot. Otherwise, if \(x\) is specified or one_facet=FALSE, a multi-panel plot will be generated where each panel corresponds to a feature. Each panel will be a scatter plot or (grouped) violin plot, depending on the nature of x .
Note that this assumes that the expression values are numeric. If not, and \(x\) is continuous, horizontal violin plots will be generated. If \(x\) is missing or categorical, rectangule plots will be generated where the area of a rectangle is proportional to the number of points for a combination of factors.

\section*{Value}

A ggplot object.

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

default plot

plotExpression(example_sce, rownames(example_sce)[1:15])

plot expression against an x-axis value

plotExpression(example_sce, c("Gene_0001", "Gene_0004"),
x="Mutation_Status")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"),
x="Gene_0002")

add visual options

plotExpression(example_sce, rownames(example_sce)[1:6],
colour_by = "Mutation_Status")
plotExpression(example_sce, rownames(example_sce)[1:6],
colour_by = "Mutation_Status", shape_by = "Treatment",
size_by = "Gene_0010")

plot expression against expression values for Gene_0004

plotExpression(example_sce, rownames(example_sce)[1:4],
"Gene_0004", show_smooth = TRUE)

```

\section*{Description}

Create a heatmap of average expression values for each group of cells and specified features in a SingleCellExperiment object.

\section*{Usage}
plotGroupedHeatmap(
object, features, group,
        block = NULL,
        columns = NULL,
        exprs_values = "logcounts",
        center = FALSE,
        zlim = NULL,
        symmetric = FALSE,
        color = NULL,
        swap_rownames = NULL,
    )

\section*{Arguments}
\begin{tabular}{ll} 
object & A SingleCellExperiment object. \\
features & \begin{tabular}{l} 
A character vector of row names, a logical vector of integer vector of indices \\
specifying rows of object to show in the heatmap.
\end{tabular} \\
group & \begin{tabular}{l} 
String specifying the field of colData(object) containing the grouping factor, \\
e.g., cell types or clusters. Alternatively, any value that can be used in the by \\
argument to retrieveCellInfo.
\end{tabular} \\
block & \begin{tabular}{l} 
String specifying the field of colData(object) containing a blocking factor \\
(e.g., batch of origin). Alternatively, any value that can be used in the by argu- \\
ment to retrieveCellInfo.
\end{tabular} \\
columns & \begin{tabular}{l} 
A vector specifying the subset of columns in object to use when computing \\
averages.
\end{tabular} \\
exprs_values & \begin{tabular}{l} 
A string or integer scalar indicating which assay of object should be used as \\
expression values for colouring in the heatmap.
\end{tabular} \\
center & \begin{tabular}{l} 
A logical scalar indicating whether each row should have its mean expression \\
centered at zero prior to plotting.
\end{tabular} \\
zlim & \begin{tabular}{l} 
A numeric vector of length 2, specifying the upper and lower bounds for color \\
mapping of expression values. Values outside this range are set to the most \\
extreme color. If NULL, it defaults to the range of the expression matrix.
\end{tabular} \\
symmetric & \begin{tabular}{l} 
A logical scalar specifying whether the default zlim should be symmetric around \\
zero. If TRUE, the maximum absolute value of zlim will be computed and mul- \\
tiplied by c(-1,1) to redefine zlim.
\end{tabular}
\end{tabular}
color A vector of colours specifying the palette to use for mapping expression values to colours. This defaults to the default setting in pheatmap.
swap_rownames String containing the field of rowData(object) to be used to identify features instead of rownames (object) when labelling plot elements.
... Additional arguments to pass to pheatmap.

\section*{Details}

This function shows the average expression values for each group of cells on a heatmap, as defined using the group factor. A per-group visualization can be preferable to a per-cell visualization when dealing with large number of cells or groups with different size. If block is also specified, the block effect is regressed out of the averages with batchCorrectedAverages prior to visualization.

Setting center=TRUE is useful for examining log-fold changes of each group's expression profile from the average across all groups. This avoids issues with the entire row appearing a certain colour because the gene is highly/lowly expressed across all cells.

Setting zlim preserves the dynamic range of colours in the presence of outliers. Otherwise, the plot may be dominated by a few genes, which will "flatten" the observed colours for the rest of the heatmap.

\section*{Value}

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
pheatmap, for the underlying function.
plotHeatmap, for a per-cell heatmap.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce$Group <- paste0(example_sce$Treatment, "+", example_sce\$Mutation_Status)
plotGroupedHeatmap(example_sce, features=rownames(example_sce)[1:10],
group="Group")
plotGroupedHeatmap(example_sce, features=rownames(example_sce)[1:10],
group="Group", center=TRUE, symmetric=TRUE)
plotGroupedHeatmap(example_sce, features=rownames(example_sce)[1:10],
group="Group", block="Cell_Cycle", center=TRUE, symmetric=TRUE)

```
```

plotHeatmap Plot heatmap of gene expression values

```

\section*{Description}

Create a heatmap of expression values for each cell and specified features in a SingleCellExperiment object.

\section*{Usage}
```

plotHeatmap(
object,
features,
columns = NULL,
exprs_values = "logcounts",
center = FALSE,
zlim = NULL,
symmetric = FALSE,
color = NULL,
colour_columns_by = NULL,
column_annotation_colors = list(),
order_columns_by = NULL,
by_exprs_values = exprs_values,
show_colnames = FALSE,
cluster_cols = is.null(order_columns_by),
swap_rownames = NULL,
..
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A SingleCellExperiment object. \\
features & \begin{tabular}{l} 
A character vector of row names, a logical vector of integer vector of indices \\
specifying rows of object to show in the heatmap.
\end{tabular} \\
columns & \begin{tabular}{l} 
A vector specifying the subset of columns in object to show as columns in \\
the heatmap. Also specifies the column order if cluster_cols=FALSE and \\
order_columns_by=NULL. By default, all columns are used.
\end{tabular} \\
exprs_values & \begin{tabular}{l} 
A string or integer scalar indicating which assay of object should be used as \\
expression values for colouring in the heatmap.
\end{tabular} \\
center & \begin{tabular}{l} 
A logical scalar indicating whether each row should have its mean expression \\
centered at zero prior to plotting.
\end{tabular} \\
zlim & \begin{tabular}{l} 
A numeric vector of length 2, specifying the upper and lower bounds for the \\
expression values. This winsorizes the expression matrix prior to plotting (but \\
after centering, if center=TRUE). If NULL, it defaults to the range of the expres- \\
sion matrix.
\end{tabular} \\
symmetric & \begin{tabular}{l} 
A logical scalar specifying whether the default zlim should be symmetric around \\
zero. If TRUE, the maximum absolute value of zlim will be computed and mul- \\
tiplied by c \((-1,1)\) to redefine zlim.
\end{tabular}
\end{tabular}
```

color A vector of colours specifying the palette to use for mapping expression values
to colours. This defaults to the default setting in pheatmap.
colour_columns_by
A list of values specifying how the columns should be annotated with colours.
Each entry of the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.
column_annotation_colors
A named list of color scales to be used for the column annotations specified in
colour_columns_by. Names should be character values present in colour_columns_by,
If a color scale is not specified for a particular annotation, a default color scale is
chosen. The full list of colour maps is passed to pheatmap as the annotation_colours
argument.
order_columns_by
A list of values specifying how the columns should be ordered. Each entry of
the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.
This argument is automatically appended to colour_columns_by.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for colouring of column-level data - see the exprs_values argument in
?retrieveCellInfo.
show_colnames, cluster_cols,...
Additional arguments to pass to pheatmap.
swap_rownames Column name of rowData(object) to be used to identify features instead of
rownames(object) when labelling plot elements.

```

\section*{Details}

Setting center=TRUE is useful for examining log-fold changes of each cell's expression profile from the average across all cells. This avoids issues with the entire row appearing a certain colour because the gene is highly/lowly expressed across all cells.
Setting zlim preserves the dynamic range of colours in the presence of outliers. Otherwise, the plot may be dominated by a few genes, which will "flatten" the observed colours for the rest of the heatmap.

Setting order_columns_by is useful for automatically ordering the heatmap by one or more factors of interest, e.g., cluster identity. This the need to set colour_columns_by, cluster_cols and columns to achieve the same effect.

\section*{Value}

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
```

pheatmap

```

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
plotHeatmap(example_sce, features=rownames(example_sce)[1:10])
plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
center=TRUE, symmetric=TRUE)
plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
colour_columns_by=c("Mutation_Status", "Cell_Cycle"))

```
plotHighestExprs Plot the highest expressing features

\section*{Description}

Plot the features with the highest average expression across all cells, along with their expression in each individual cell.

\section*{Usage}
```

plotHighestExprs(
object,
n = 50,
colour_cells_by = NULL,
drop_features = NULL,
exprs_values = "counts",
by_exprs_values = exprs_values,
feature_names_to_plot = NULL,
as_percentage = TRUE,
swap_rownames = NULL
)

```

\section*{Arguments}
object A SingleCellExperiment object.
n
A numeric scalar specifying the number of the most expressed features to show.
colour_cells_by
Specification of a column metadata field or a feature to colour by, see ? retrieveCellInfo for possible values.
drop_features A character, logical or numeric vector indicating which features (e.g. genes, transcripts) to drop when producing the plot. For example, spike-in transcripts might be dropped to examine the contribution from endogenous genes.
exprs_values A integer scalar or string specifying the assay to obtain expression values from.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values from, for use in colouring - see ?retrieveCellInfo for details.
feature_names_to_plot
String specifying which row-level metadata column contains the feature names. Alternatively, an AsIs-wrapped vector or a data.frame, see ?retrieveFeatureInfo for possible values. Default is NULL, in which case rownames (object) are used.
as_percentage logical scalar indicating whether percentages should be plotted. If FALSE, the raw exprs_values are shown instead.
swap_rownames Column name of rowData(object) to be used to identify features instead of rownames(object) when labelling plot elements.

\section*{Details}

This function will plot the percentage of counts accounted for by the top n most highly expressed features across the dataset. Each row on the plot corresponds to a feature and is sorted by average expression (denoted by the point). The distribution of expression across all cells is shown as tick marks for each feature. These ticks can be coloured according to cell-level metadata, as specified by colour_cells_by.

\section*{Value}

A ggplot object.

\section*{Examples}
```

example_sce <- mockSCE()
colData(example_sce) <- cbind(colData(example_sce),
perCellQCMetrics(example_sce))
plotHighestExprs(example_sce, colour_cells_by="detected")
plotHighestExprs(example_sce, colour_cells_by="Mutation_Status")

```
```

plotPlatePosition Plot cells in plate positions

```

\section*{Description}

Plots cells in their position on a plate, coloured by metadata variables or feature expression values from a SingleCellExperiment object.

\section*{Usage}
```

plotPlatePosition(
object,
plate_position = NULL,
colour_by = NULL,
size_by = NULL,
shape_by = NULL,
by_exprs_values = "logcounts",
add_legend = TRUE,
theme_size = 24,
point_alpha = 0.6,
point_size = 24,

```
```

 other_fields = list(),
 swap_rownames = NULL
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A SingleCellexperiment object. \\
plate_position & \begin{tabular}{l} 
A character vector specifying the plate position for each cell (e.g., A01, B12, \\
and so on, where letter indicates row and number indicates column). If NULL, \\
the function will attempt to extract this from object\$plate_position. Alter- \\
natively, a list of two factors ("row" and "column") can be supplied, specifying \\
the row (capital letters) and column (integer) for each cell in object.
\end{tabular} \\
colour_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to colour by, see the by \\
argument in ?retrieveCellInfo for possible values.
\end{tabular} \\
size_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to size by, see the by argu- \\
ment in ?retrieveCellinnfo for possible values.
\end{tabular} \\
shape_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to shape by, see the by \\
argument in ?retrieveCellInfo for possible values.
\end{tabular} \\
by_exprs_values
\end{tabular}

\section*{Details}

This function expects plate positions to be given in a charcter format where a letter indicates the row on the plate and a numeric value indicates the column. Each cell has a plate position such as "A01", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter, and the column as the numeric part. Alternatively, the row and column identities can be directly supplied by setting plate_position as a list of two factors.

\section*{Value}

A ggplot object.

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{Examples}
```

 example_sce <- mockSCE()
 example_sce <- logNormCounts(example_sce)
 ## define plate positions
 example_sce$plate_position <- paste0(
 rep(LETTERS[1:5], each = 8),
 rep(formatC(1:8, width = 2, flag = "0"), 5)
)

plot plate positions

plotPlatePosition(example_sce, colour_by = "Mutation_Status")
plotPlatePosition(example_sce, shape_by = "Treatment",
colour_by = "Gene_0004")
plotPlatePosition(example_sce, shape_by = "Treatment", size_by = "Gene_0001",
colour_by = "Cell_Cycle")

```
```

plotReducedDim Plot reduced dimensions

```

\section*{Description}

Plot cell-level reduced dimension results stored in a SingleCellExperiment object.

\section*{Usage}
```

plotReducedDim(
object,
dimred,
ncomponents = 2,
percentVar = NULL,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts",
text_by = NULL,
text_size = 5,
text_colour = "black",
label_format = c("%s %i", " (%i%%)"),
other_fields = list(),
swap_rownames = NULL,
)

```

\section*{Arguments}
object A SingleCellExperiment object.
dimred A string or integer scalar indicating the reduced dimension result in reducedDims (object) to plot.
\begin{tabular}{ll} 
ncomponents & \begin{tabular}{l} 
A numeric scalar indicating the number of dimensions to plot, starting from the \\
first dimension. Alternatively, a numeric vector specifying the dimensions to be \\
plotted.
\end{tabular} \\
percentVar & \begin{tabular}{l} 
A numeric vector giving the proportion of variance in expression explained by \\
each reduced dimension. Only expected to be used in PCA settings, e.g., in the \\
plotPCA function.
\end{tabular} \\
colour_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to colour by, see the by \\
argument in ?retrieveCellInfo for possible values.
\end{tabular} \\
shape_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to shape by, see the by \\
argument in ?retrieveCellInfo for possible values.
\end{tabular} \\
size_by & \begin{tabular}{l} 
Specification of a column metadata field or a feature to size by, see the by argu- \\
ment in ?retrieveCellinfo for possible values.
\end{tabular} \\
by_exprs_values
\end{tabular}\(\quad\)\begin{tabular}{l} 
A string or integer scalar specifying which assay to obtain expression values \\
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.
\end{tabular}

\section*{Details}

If ncomponents is a scalar equal to 2, a scatterplot of the first two dimensions is produced. If ncomponents is greater than 2, a pairs plots for the top dimensions is produced.
Alternatively, if ncomponents is a vector of length 2, a scatterplot of the two specified dimensions is produced. If it is of length greater than 2, a pairs plot is produced containing all pairwise plots between the specified dimensions.
The text_by option will add factor levels as labels onto the plot, placed at the median coordinate across all points in that level. This is useful for annotating position-related metadata (e.g., clusters) when there are too many levels to distinguish by colour. It is only available for scatterplots.

\section*{Value}

A ggplot object

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce, ncomponents=5)
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")
plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle",
shape_by="Treatment")

```
```

plotRLE Plot relative log expression

```

\section*{Description}

Produce a relative log expression (RLE) plot of one or more transformations of cell expression values.

\section*{Usage}
```

plotRLE(
object,
exprs_values = "logcounts",
exprs_logged = TRUE,
style = "minimal",
legend = TRUE,
ordering = NULL,
colour_by = NULL,
by_exprs_values = exprs_values,
BPPARAM = BiocParallel::bpparam(),
)

```

\section*{Arguments}
object A SingleCellExperiment object.
exprs_values A string or integer scalar specifying the expression matrix in object to use.
exprs_logged A logical scalar indicating whether the expression matrix is already log-transformed. If not, a \(\log 2\)-transformation \((+1)\) will be performed prior to plotting.
style \(\quad\) String defining the boxplot style to use, either "minimal" (default) or "full"; see Details.
legend Logical scalar specifying whether a legend should be shown.
ordering A vector specifying the ordering of cells in the RLE plot. This can be useful for arranging cells by experimental conditions or batches.
colour_by Specification of a column metadata field or a feature to colour by, see the by argument in ?retrieveCellInfo for possible values.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.
BPPARAM A BiocParallelParam object to be used to parallelise operations using DelayedArray. .. further arguments passed to geom_boxplot when style="full".

\section*{Details}

Relative log expression (RLE) plots are a powerful tool for visualising unwanted variation in high dimensional data. These plots were originally devised for gene expression data from microarrays but can also be used on single-cell expression data. RLE plots are particularly useful for assessing whether a procedure aimed at removing unwanted variation (e.g., scaling normalisation) has been successful.

If style is "full", the usual ggplot \(\mathbf{2}\) boxplot is created for each cell. Here, the box shows the interquartile range and whiskers extend no more than 1.5 times the IQR from the hinge (the 25th or 75th percentile). Data beyond the whiskers are called outliers and are plotted individually. The median (50th percentile) is shown with a white bar. This approach is detailed and flexible, but can take a long time to plot for large datasets.

If style is "minimal", a Tufte-style boxplot is created for each cell. Here, the median is shown with a circle, the IQR in a grey line, and "whiskers" (as defined above) for the plots are shown with coloured lines. No outliers are shown for this plot style. This approach is more succinct and faster for large numbers of cells.

\section*{Value}

A ggplot object

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{References}

Gandolfo LC, Speed TP (2017). RLE plots: visualising unwanted variation in high dimensional data. arXiv.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
plotRLE(example_sce, colour_by = "Mutation_Status", style = "minimal")
plotRLE(example_sce, colour_by = "Mutation_Status", style = "full",
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = 0)

```

\section*{plotRowData Plot row metadata}

\section*{Description}

Plot row-level (i.e., gene) metadata from a SingleCellExperiment object.

\section*{Usage}
plotRowData( object, \(y\), x = NULL, colour_by = NULL, shape_by = NULL, size_by = NULL, by_exprs_values = "logcounts", other_fields = list(),
```

)

```

\section*{Arguments}
object A SingleCellExperiment object containing expression values and experimental information.
y String specifying the column-level metadata field to show on the y -axis. Alternatively, an AsIs vector or data.frame, see ?retrieveFeatureInfo.
\(x \quad\) String specifying the column-level metadata to show on the \(x\)-axis. Alternatively, an AsIs vector or data.frame, see ?retrieveFeatureInfo. If NULL, nothing is shown on the x -axis.
colour_by Specification of a row metadata field or a cell to colour by, see ?retrieveFeatureInfo for possible values.
shape_by Specification of a row metadata field or a cell to shape by, see ?retrieveFeatureInfo for possible values.
size_by Specification of a row metadata field or a cell to size by, see ?retrieveFeatureInfo for possible values.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values from, for use in point aesthetics - see ?retrieveFeatureInfo for details.
other_fields Additional feature-based fields to include in the data.frame, see ?"scater-plot-args" for details.
... Additional arguments for visualization, see ?"scater-plot-args" for details.

\section*{Details}

If \(y\) is continuous and \(x=N U L L\), a violin plot is generated. If \(x\) is categorical, a grouped violin plot will be generated, with one violin for each level of \(x\). If \(x\) is continuous, a scatter plot will be generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where the area of a rectangle is proportional to the number of points for a combination of factors.

\section*{Value}

A ggplot object.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce) <- cbind(rowData(example_sce),
perFeatureQCMetrics(example_sce))
plotRowData(example_sce, y="detected", x="mean") +
scale_x_log10()

```
plotScater
Plot an overview of expression for each cell

\section*{Description}

Plot the relative proportion of the library size that is accounted for by the most highly expressed features for each cell in a SingleCellExperiment object.

\section*{Usage}
```

plotScater(
x,
nfeatures = 500,
exprs_values = "counts",
colour_by = NULL,
by_exprs_values = exprs_values,
block1 = NULL,
block2 = NULL,
ncol = 3,
line_width = 1.5,
theme_size = 10
)

```

\section*{Arguments}
\(x \quad\) A SingleCellExperiment object.
nfeatures Numeric scalar indicating the number of top-expressed features to show n the plot.
exprs_values String or integer scalar indicating which assay of object should be used to obtain the expression values for this plot.
colour_by Specification of a column metadata field or a feature to colour by, see the by argument in ?retrieveCellInfo for possible values. The curve for each cell will be coloured according to this specification.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.
block1 String specifying the column-level metadata field by which to separate the cells into separate panels in the plot. Alternatively, an AsIs vector or data.frame, see ?retrieveCellInfo. Default is NULL, in which case there is no blocking.
block2 Same as block1, providing another level of blocking.
ncol Number of columns to use for facet_wrap if only one block is defined.
line_width Numeric scalar specifying the line width.
theme_size Numeric scalar specifying the font size to use for the plotting theme.

\section*{Details}

For each cell, the features are ordered from most-expressed to least-expressed. The cumulative proportion of the total expression for the cell is computed across the top nfeatures features. These plots can flag cells with a very high proportion of the library coming from a small number of features; such cells are likely to be problematic for downstream analyses.

Using the colour and blocking arguments can flag overall differences in cells under different experimental conditions or affected by different batch and other variables. If only one of block1 and block2 are specified, each panel corresponds to a separate level of the specified blocking factor. If both are specified, each panel corresponds to a combination of levels.

\section*{Value}

A ggplot object.

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{Examples}
```

example_sce <- mockSCE()
plotScater(example_sce)
plotScater(example_sce, exprs_values = "counts", colour_by = "Cell_Cycle")
plotScater(example_sce, block1 = "Treatment", colour_by = "Cell_Cycle")

```
Reduced dimension plots
Plot specific reduced dimensions

\section*{Description}

Wrapper functions to create plots for specific types of reduced dimension results in a SingleCellExperiment object.

\section*{Usage}
```

 plotPCASCE(object, ..., ncomponents = 2)
 plotTSNE(object, ..., ncomponents = 2)
 plotUMAP(object, ..., ncomponents = 2)
 plotDiffusionMap(object, ..., ncomponents = 2)
 plotMDS(object, ..., ncomponents = 2)
 plotNMF (object, ..., ncomponents = 2)
 \#\# S4 method for signature 'SingleCellExperiment'
 plotPCA(object, ..., ncomponents = 2)
    ```

\section*{Arguments}
\[
\begin{array}{ll}
\text { object } & \text { A SingleCellExperiment object. } \\
\ldots & \text { Additional arguments to pass to plotReducedDim. } \\
\text { ncomponents } & \begin{array}{l}
\text { Numeric scalar indicating the number of dimensions components to (calculate } \\
\text { and) plot. This can also be a numeric vector, see ?plotReducedDim for details. }
\end{array}
\end{array}
\]

\section*{Details}

Each function is a convenient wrapper around plotReducedDim that searches the reducedDims slot for an appropriately named dimensionality reduction result:
- "PCA" for plotPCA
- "TSNE" for plotTSNE
- "DiffusionMap" for plotDiffusionMap
- "MDS" for "plotMDS"
- "NMF" for "plotNMF"
- "UMAP" for "plotUMAP"

Its only purpose is to streamline workflows to avoid the need to specify the dimred argument.

\section*{Value}

A ggplot object.

\section*{Author(s)}

Davis McCarthy, with modifications by Aaron Lun

\section*{See Also}
runPCA, runDiffusionMap, runTSNE, runMDS, runNMF, and runUMAP, for the functions that actually perform the calculations.
plotReducedDim, for the underlying plotting function.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

Examples plotting PC1 and PC2

plotPCA(example_sce)
plotPCA(example_sce, colour_by = "Cell_Cycle")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment")

Examples plotting more than 2 PCs

plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment",
shape_by = "Mutation_Status")

Same for TSNE:

example_sce <- runTSNE(example_sce)
plotTSNE(example_sce, colour_by="Mutation_Status")

Same for DiffusionMaps:

example_sce <- runDiffusionMap(example_sce)
plotDiffusionMap(example_sce)

Same for MDS plots:

example_sce <- runMDS(example_sce)
plotMDS(example_sce)

```
```

retrieveCellInfo Cell-based data retrieval

```

\section*{Description}

Retrieves a per-cell (meta)data field from a SingleCellExperiment based on a single keyword, typically for use in visualization functions.

\section*{Usage}
```

retrieveCellInfo(
x,
by,
search = c("colData", "assays", "altExps"),
exprs_values = "logcounts",
swap_rownames = NULL
)

```

\section*{Arguments}
x
by
A SingleCellExperiment object.
A string specifying the field to extract (see Details). Alternatively, a data.frame, DataFrame or an AsIs vector.
search
Character vector specifying the types of data or metadata to use.
exprs_values String or integer scalar specifying the assay from which expression values should be extracted.
swap_rownames Column name of rowData(object) to be used to identify features instead of rownames(object) when labelling plot elements.

\section*{Details}

Given an AsIs-wrapped vector in by, this function will directly return the vector values as value, while name is set to an empty string. For data.frame or DataFrame instances with a single column, this function will return the vector from that column as value and the column name as name. This allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.
Given a character string in by, this function will:
1. Search colData for a column named by, and return the corresponding field as the output value. We do not consider nested elements within the colData.
2. Search assay (x, exprs_values) for a row named by, and return the expression vector for this feature as the output value.
3. Search each alternative experiment in altExps(x) for a row names by, and return the expression vector for this feature at exprs_values as the output value.

Any match will cause the function to return without considering later possibilities. The search can be modified by changing the presence and ordering of elements in search.
If there is a name clash that results in retrieval of an unintended field, users should explicitly set by to a data.frame, DataFrame or AsIs-wrapped vector containing the desired values. Developers can also consider setting search to control the fields that are returned.

\section*{Value}

A list containing name, a string with the name of the extracted field (usually identically to by); and value, a vector of length equal to \(n \operatorname{col}(x)\) containing per-cell (meta)data values. If by=NULL, both name and value are set to NULL.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
makePerCellDF, which provides a more user-friendly interface to this function.
plotColData, plotReducedDim, plotExpression, plotPlatePosition, and most other cell-based plotting functions.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
retrieveCellInfo(example_sce, "Cell_Cycle")
retrieveCellInfo(example_sce, "Gene_0001")
arbitrary.field <- rnorm(ncol(example_sce))
retrieveCellInfo(example_sce, I(arbitrary.field))
retrieveCellInfo(example_sce, data.frame(stuff=arbitrary.field))

```

\section*{Description}

Retrieves a per-feature (meta)data field from a SingleCellExperiment based on a single keyword, typically for use in visualization functions.

\section*{Usage}
```

 retrieveFeatureInfo(
 x,
 by,
 search = c("rowData", "assays"),
 exprs_values = "logcounts"
)
    ```

\section*{Arguments}
\(x \quad\) A SingleCellExperiment object.
by A string specifying the field to extract (see Details). Alternatively, a data.frame, DataFrame or an AsIs vector.
search Character vector specifying the types of data or metadata to use.
exprs_values String or integer scalar specifying the assay from which expression values should be extracted.

\section*{Details}

Given a AsIs-wrapped vector in by, this function will directly return the vector values as value, while name is set to an empty string. For data.frame or DataFrame instances with a single column, this function will return the vector from that column as value and the column name as name. This allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.

Given a character string in by, this function will:
1. Search rowData for a column named by, and return the corresponding field as the output value. We do not consider nested elements within the rowData.
2. Search assay (x, exprs_values) for a column named by, and return the expression vector for this feature as the output value.

Any match will cause the function to return without considering later possibilities. The search can be modified by changing the presence and ordering of elements in search.
If there is a name clash that results in retrieval of an unintended field, users should explicitly set by to a data.frame, DataFrame or AsIs-wrapped vector containing the desired values. Developers can also consider setting search to control the fields that are returned.

\section*{Value}

A list containing name, a string with the name of the extracted field (usually identically to by); and value, a vector of length equal to \(n \operatorname{col}(x)\) containing per-feature (meta)data values. If by=NULL, both name and value are set to NULL.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
makePerFeatureDF, which provides a more user-friendly interface to this function. plotRowData and other feature-based plotting functions.

\section*{Examples}
```

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce)\$blah <- sample(LETTERS,
nrow(example_sce), replace=TRUE)
str(retrieveFeatureInfo(example_sce, "blah"))
str(retrieveFeatureInfo(example_sce, "Cell_001"))
arbitrary.field <- rnorm(nrow(example_sce))
str(retrieveFeatureInfo(example_sce, I(arbitrary.field)))
str(retrieveFeatureInfo(example_sce, data.frame(stuff=arbitrary.field)))

```
runColDataPCA Perform PCA on column metadata

\section*{Description}

Perform a principal components analysis (PCA) on cells, based on the column metadata in a SingleCellExperiment object.

\section*{Usage}
runColDataPCA( x ,
    ncomponents = 2,
    variables = NULL,
    scale = TRUE,
    outliers = FALSE,
    BSPARAM = ExactParam(),
    BPPARAM = SerialParam(),
    name = "PCA_coldata"
)

\section*{Arguments}

X
ncomponents Numeric scalar indicating the number of principal components to obtain.
variables List of strings or a character vector indicating which variables in colData( \(x\) ) to use. If a list, each entry can also be an AsIs vector or a data.frame, as described in ?retrieveCellInfo.
scale Logical scalar, should the expression values be standardised so that each feature has unit variance? This will also remove features with standard deviations below 1e-8.
outliers Logical indicating whether outliers should be detected based on PCA coordinates.
BSPARAM A BiocSingularParam object specifying which algorithm should be used to perform the PCA.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.
name String specifying the name to be used to store the result in the reducedDims of the output.

\section*{Details}

This function performs PCA on variables from the column-level metadata instead of the gene expression matrix. Doing so can be occasionally useful when other forms of experimental data are stored in the colData, e.g., protein intensities from FACs or other cell-specific phenotypic information.

This function is particularly useful for identifying low-quality cells based on QC metrics with outliers=TRUE. This uses an "outlyingness" measure computed by adjOutlyingness in the robustbase package. Outliers are defined those cells with outlyingness values more than 5 MADs above the median, using isOutlier.

\section*{Value}

A SingleCellExperiment object containing the first ncomponent principal coordinates for each cell. By default, these are stored in the "PCA_coldata" entry of the reducedDims slot. The proportion of variance explained by each PC is stored as a numeric vector in the "percentVar" attribute.

If outliers=TRUE, the output colData will also contain a logical outlier field. This specifies the cells that correspond to the identified outliers.

\section*{Author(s)}

Aaron Lun, based on code by Davis McCarthy

\section*{See Also}
runPCA, for the corresponding method operating on expression data.

\section*{Examples}
```

example_sce <- mockSCE()
qc.df <- perCellQCMetrics(example_sce, subset=list(Mito=1:10))
colData(example_sce) <- cbind(colData(example_sce), qc.df)

Can supply names of colData variables to 'variables',

as well as AsIs-wrapped vectors of interest.

example_sce <- runColDataPCA(example_sce, variables=list(
"sum", "detected", "subsets_Mito_percent", "altexps_Spikes_percent"
))
reducedDimNames(example_sce)
head(reducedDim(example_sce))

```
```

runMultiUMAP Multi-modal UMAP

```

\section*{Description}

Perform UMAP with multiple input matrices by intersecting their simplicial sets. Typically used to combine results from multiple data modalities into a single embedding.

\section*{Usage}
```

calculateMultiUMAP(x, ...)
\#\# S4 method for signature 'ANY'
calculateMultiUMAP(x, ..., metric = "euclidean")
\#\# S4 method for signature 'SummarizedExperiment'
calculateMultiUMAP(x, exprs_values, ...)
\#\# S4 method for signature 'SingleCellExperiment'
calculateMultiUMAP(
x,
exprs_values,
dimred,
altexp,
altexp_exprs_values = "logcounts",
)
runMultiUMAP(x, ..., name = "MultiUMAP")

```

\section*{Arguments}
\(x \quad\) For calculateMultiUMAP, a list of numeric matrices where each row is a cell and each column is some dimension/variable. For gene expression data, this is usually the matrix of PC coordinates.
Alternatively, a SummarizedExperiment containing relevant matrices in its assays.
Alternatively, a SingleCellExperiment containing relevant matrices in its assays, reducedDims or altExps. This is also the only permissible argument for runMultiUMAP.
... For the generic, further arguments to pass to specific methods.
For the ANY method, further arguments to pass to umap.
For the SummarizedExperiment and SingleCellExperiment methods, and for runMultiUMAP, further arguments to pass to the ANY method.
metric Character vector specifying the type of distance to use for each matrix in x . This is recycled to the same number of matrices supplied in \(x\).
exprs_values A character or integer vector of assays to extract and transpose for use in the UMAP. For the SingleCellExperiment, this argument can be missing, in which case no assays are used.
```

dimred A character or integer vector of reducedDims to extract for use in the UMAP.
This argument can be missing, in which case no assays are used.
altexp A character or integer vector of altExps to extract and transpose for use in the
UMAP. This argument can be missing, in which case no alternative experiments
are used
altexp_exprs_values
A character or integer vector specifying the assay to extract from alternative
experiments, when altexp is specified. This is recycled to the same length as
altexp.
name String specifying the name of the reducedDims in which to store the UMAP.

```

\section*{Details}

These functions serve as convenience wrappers around umap for multi-modal analysis. The idea is that each input matrix in \(x\) corresponds to data for a different mode. A typical example would consist of the PC coordinates generated from gene expression counts, plus the log-abundance matrix for ADT counts from CITE-seq experiments; one might also include matrices of transformed intensities from indexed FACS, to name some more possibilities.

Roughly speaking, the idea is to identify nearest neighbors within each mode to construct the simplicial sets. Integration of multiple modes is performed by intersecting the sets to obtain a single graph, which is used in the rest of the UMAP algorithm. By performing an intersection, we focus on relationships between cells that are consistently neighboring across all the modes, thus providing greater resolution of differences at any mode. The neighbor search within each mode also avoids difficulties with quantitative comparisons of distances between modes.
The most obvious use of this function is to generate a low-dimensional embedding for visualization. However, users can also set \(\mathrm{n}_{\mathrm{C}}\) components to a higher value (e.g., 10-20) to retain more information for downstream steps like clustering. This Do, however, remember to set the seed appropriately.
By default, all modes use the distance metric of metric to construct the simplicial sets within each mode. However, it is possible to vary this by supplying a vector of metrics, e.g., "euclidean" for the first matrix, "manhattan" for the second. For the SingleCellExperiment method, matrices are extracted in the order of assays, reduced dimensions and alternative experiments, so any variation in metrics is also assumed to follow this order.

\section*{Value}

For calculateMultiUMAP, a numeric matrix containing the low-dimensional UMAP embedding. For runMultiUMAP, x is returned with a MultiUMAP field in its reducedDims.

\section*{Author(s)}

Aaron Lun

\section*{See Also}
runUMAP, for the more straightforward application of UMAP.

\section*{Examples}
```


Mocking up a gene expression + ADT dataset:

exprs_sce <- mockSCE()
exprs_sce <- logNormCounts(exprs_sce)
exprs_sce <- runPCA(exprs_sce)

```
```

adt_sce <- mockSCE(ngenes=20)
adt_sce <- logNormCounts(adt_sce)
altExp(exprs_sce, "ADT") <- adt_sce

Running a multimodal analysis using PCs for expression

and log-counts for the ADTs:

exprs_sce <- runMultiUMAP(exprs_sce, dimred="PCA", altexp="ADT")
plotReducedDim(exprs_sce, "MultiUMAP")

```
scater-pkg The scater package

\section*{Description}

Provides functions for convenient visualization of single-cell data, mostly via ggplot2. It also used to provide utilities for data transformation and quality control, but these have largely been moved to the scuttle package.

\section*{Author(s)}

Davis McCarthy, Aaron Lun

\section*{scater-plot-args General visualization parameters}

\section*{Description}
scater functions that plot points share a number of visualization parameters, which are described on this page.

\section*{Aesthetic parameters}
add_legend: Logical scalar, specifying whether a legend should be shown. Defaults to TRUE.
theme_size: Integer scalar, specifying the font size. Defaults to 10 .
point_alpha: Numeric scalar in [0, 1], specifying the transparency. Defaults to 0.6. point_size: Numeric scalar, specifying the size of the points. Defaults to NULL.
jitter_type: String to define how points are to be jittered in a violin plot. This is either with random jitter on the x -axis ("jitter") or in a "beeswarm" style (if "swarm", default). The latter usually looks more attractive, but for datasets with a large number of cells, or for dense plots, the jitter option may work better.

\section*{Distributional calculations}
show_median: Logical, should the median of the distribution be shown for violin plots? Defaults to FALSE.
show_violin: Logical, should the outline of a violin plot be shown? Defaults to TRUE.
show_smooth: Logical, should a smoother be fitted to a scatter plot? Defaults to FALSE.
show_se: Logical, should standard errors for the fitted line be shown on a scatter plot when show_smooth=TRUE?
Defaults to TRUE.

\section*{Miscellaneous fields}

Addititional fields can be added to the data.frame passed to ggplot by setting the other_fields argument. This allows users to easily incorporate additional metadata for use in further ggplot operations.
The other_fields argument should be character vector where each string is passed to retrieveCellInfo (for cell-based plots) or retrieveFeatureInfo (for feature-based plots). Alternatively, other_fields can be a named list where each element is of any type accepted by retrieveCellInfo or retrieveFeatureInfo. This includes AsIs-wrapped vectors, data.frames or DataFrames.
Each additional column of the output data.frame will be named according to the name returned by retrieveCellInfo or retrieveFeatureInfo. If these clash with inbuilt names (e.g., X, Y, colour_by), a warning will be raised and the additional column will not be added to avoid overwriting an existing column.

\section*{See Also}
plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most other plotting functions.

\section*{SCESet The "Single Cell Expression Set" (SCESet) class}

\section*{Description}

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the basic Bioconductor ExpressionSet class.

\section*{Details}

This class is initialized from a matrix of expression values.
Methods that operate on SCESet objects constitute the basic scater workflow.

\section*{Slots}
logExprsOffset: Scalar of class "numeric", providing an offset applied to expression data in the 'exprs' slot when undergoing log2-transformation to avoid trying to take logs of zero.
lowerDetectionLimit: Scalar of class "numeric", giving the lower limit for an expression value to be classified as "expressed".
cellPairwiseDistances: Matrix of class "numeric", containing pairwise distances between cells.
featurePairwiseDistances: Matrix of class "numeric", containing pairwise distances between features.
reducedDimension: Matrix of class "numeric", containing reduced-dimension coordinates for cells (generated, for example, by PCA).
bootstraps: Array of class "numeric" that can contain bootstrap estimates of the expression or count values.
sc3: List containing results from consensus clustering from the SC3 package.
featureControlInfo: Data frame of class "AnnotatedDataFrame" that can contain information/metadata about sets of control features defined for the SCESet object. bootstrap estimates of the expression or count values.

\section*{References}

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet class, which provided the inspiration and template for SCESet
```

updateSCESet Convert an SCESet object to a SingleCellExperiment object

```

\section*{Description}

Convert an SCESet object produced with an older version of the package to a SingleCellExperiment object compatible with the current version.

\section*{Usage}
updateSCESet(object)
toSingleCellExperiment(object)

\section*{Arguments}
object an SCESet object to be updated

\section*{Value}
a SingleCellExperiment object

\section*{Examples}
```


Not run:

updateSCESet(example_sceset)

End(Not run)

Not run:

toSingleCellExperiment(example_sceset)

End(Not run)

```

\section*{Index}
aes, 30
altExp, 9, 12, 15, 18, 22, 25
altExps, 59, 63, 64
annotateBMFeatures, 3
AsIs, 35, 37, 48, 51, 54, 56, 58-61, 66
assay, 59, 60
batchCorrectedAverages, 4, 37, 44
BiocNeighborParam, 20, 24
BiocParallelParam, 17, 20, 24, 33, 53, 62
BiocSingularParam, 16, 62
bootstraps, 6
bootstraps,SingleCellExperiment-method (bootstraps), 6
bootstraps<-(bootstraps), 6
bootstraps<-, SingleCellExperiment, array-methoda (bootstraps), 6
bsparam, 17
calculateDiffusionMap, 7
calculateDiffusionMap, ANY-method (calculateDiffusionMap), 7
calculateDiffusionMap,SingleCellExperiment(calculateDiffusionMap), 7
calculateDiffusionMap, SummarizedExperiment-metho (calculateDiffusionMap), 7
calculateMDS, 10
calculateMDS, ANY-method (calculateMDS), 10
calculateMDS, SingleCellExperiment-method (calculateMDS), 10
calculateMDS, SummarizedExperiment-method (calculateMDS), 10
calculateMultiUMAP (runMultiUMAP), 63
calculateMultiUMAP, ANY-method (runMultiUMAP), 63 eMultiUMAP, Single
(runMultiUMAP), 63
calculateMultiUMAP, SummarizedExperiment-metho@xprs<-, SingleCellExperiment, ANY-method (runMultiUMAP), 63
calculateNMF, 12
calculateNMF, ANY-method (calculateNMF), 12
calculateNMF, SingleCellExperiment-method (calculateNMF), 12
calculateNMF, SummarizedExperiment-method (calculateNMF), 12
calculatePCA, 15
calculatePCA, ANY-method (calculatePCA), 15
calculatePCA, SingleCellExperiment-method (calculatePCA), 15
calculatePCA, SummarizedExperiment-method (calculatePCA), 15
calculateQCMetrics (defunct), 26
calculateTSNE, 19
calculateTSNE, ANY-method (calculateTSNE), 19
galculateTSNE, SingleCellExperiment-method (calculateTSNE), 19
calculateTSNE, SummarizedExperiment-method (calculateTSNE), 19
calculateUMAP, 22
calculateUMAP, ANY-method (calculateUMAP), 22
calculateUMAP, SingleCellExperiment-method (calculateUMAP), 22
calculateUMAP, SummarizedExperiment-method
(calculateUMAP), 22
centreSizeFactors (defunct), 26
cmdscale, 11, 12
colData, 43, 59
DataFrame, 3, 28, 58, 60, 66
defunct, 26
DelayedArray, 53
DelayedMatrix, 33
DiffusionMap, 7-9
exprs (norm_exprs), 34
calculateMultiUMAP, SingleCellExperiment-methoexprs, SingleCellExperiment-method, (norm_exprs), 34 (norm_exprs), 34
facet_wrap, 41, 56
findKNN, 20, 24
fpkm (norm_exprs), 34
fpkm,SingleCellExperiment-method (norm_exprs), 34
fpkm<- (norm_exprs), 34
fpkm<-, SingleCellExperiment, ANY-method (norm_exprs), 34
geom_boxplot, 53
getBM, 3
getBMFeatureAnnos (annotateBMFeatures), 3
getExplanatoryPCs, 27, 29, 39
getVarianceExplained, 27, 28, 40
getVarianceExplained,ANY-method (getVarianceExplained), 28
getVarianceExplained, SummarizedExperiment-methbdtPCA Single (getVarianceExplained), 28
ggcells, 29
ggfeatures (ggcells), 29
ggplot, 29-31, 36, 38, 48, 55-57, 66
grid. arrange, 31
isOutlier, 62
logNormCounts, 26
makePerCelldF, 30, 59
makePerFeatureDF, 30, 61
MulticoreParam, 20, 24
multiplot, 31
nexprs, 32
nexprs, ANY-method (nexprs), 32
nexprs,SummarizedExperiment-method (nexprs), 32
nmf, 14, 15
norm_exprs, 34
norm_exprs,SingleCellExperiment-method (norm_exprs), 34
norm_exprs<- (norm_exprs), 34
norm_exprs<-,SingleCellExperiment, ANY-method (norm_exprs), 34
normalize, SingleCellExperiment-method (defunct), 26
normalize_input, 20
numDetectedAcrossCells, 33
numDetectedAcrossFeatures, 33
perCellQCMetrics, 26
perFeatureQCMetrics, 26
pheatmap, 44, 46
plotColData, 35, 59, 66
plotDiffusionMap, 9
plotDiffusionMap (Reduced dimension plots), 56
plotDots, 5, 36
plotExplanatoryPCs, 27, 38
plotExplanatoryVariables, 29, 39
plotExpression, 38, 40, 59, 66
plotGroupedHeatmap, 5, 43
plotHeatmap, 38, 44, 45
plotHighestExprs, 47
plotMDS, 12
plotMDS (Reduced dimension plots), 56 plotNMF, 15
plotNMF (Reduced dimension plots), 56 plotPCA, 18, 51
plotPCA (Reduced dimension plots), 56
hod
(Reduced dimension plots), 56
plotPCASCE (Reduced dimension plots), 56
plotPlatePosition, 48, 59, 66
plotReducedDim, 50, 57, 59, 66
plotRLE, 52
plotRLE, SingleCellExperiment-method (plotRLE), 52
plotRowData, 54, 61, 66
plotScater, 55
plotTSNE, 22
plotTSNE (Reduced dimension plots), 56
plotUMAP, 26
plotUMAP (Reduced dimension plots), 56
Reduced dimension plots, 56
reducedDim, \(8,9,11,14,18,21,24,25\)
reducedDims, \(8,9,11,12,14,15,17,18,20\), \(22,24,25,57,63,64\)
retrieveCellInfo, 35, 37, 41, 43, 46, 47, 49, 51-53, 55, 56, 58, 61, 66
retrieveFeatureInfo, \(48,54,60,66\)
rowData, 3, 60
Rtsne, 13, 20-22
Rtsne_neighbors, 21
runColDataPCA, 61
runDiffusionMap, 57
runDiffusionMap (calculateDiffusionMap), 7
runMDS, 57
runMDS (calculateMDS), 10
runMultiUMAP, 63
runNMF, 57
runNMF (calculateNMF), 12
runPCA, \(18,27,57,62\)
runPCA (calculatePCA), 15
runPCA, SingleCellExperiment-method (calculatePCA), 15
runTSNE, 57
runTSNE (calculateTSNE), 19
runUMAP, 57, 64
runUMAP (calculateUMAP), 22
scater-pkg, 65
scater-plot-args, 65
SCESet, 66, 67
SCESet-class (SCESet), 66
set.seed, \(8,14,17,20,24\)
SingleCellExperiment, 3, 6-19, 21-25, 27,
29, 30, 34, 35, 37, 43, 55, 58, 60, 61, 63, 67
stand_exprs (norm_exprs), 34
stand_exprs, SingleCellExperiment-method, (norm_exprs), 34
stand_exprs<-(norm_exprs), 34
stand_exprs<-,SingleCellExperiment, ANY-method (norm_exprs), 34
summarizeAssayByGroup, 4
SummarizedExperiment, \(7,9,10,12,13,15\),
\(16,18,19,22,23,25,28,33,63\)
toSingleCellExperiment (updateSCESet), 67
umap, 23, 24, 26, 63, 64
updateSCESet, 67
useMart, 3```

