Package 'tradeSeq'

March 30, 2021

Type Package

Title trajectory-based differential expression analysis for sequencing

Date 2019-03-17 **Version** 1.4.0

Description tradeSeq provides a flexible method for fitting regression mod-

els that can be used to find genes that are differentially expressed along one or multiple lineages in a trajectory. Based on the fitted models, it uses a variety of tests suited to answer different questions of interest, e.g. the discovery of genes for which expression is associated with pseudotime, or which are differentially expressed (in a specific region) along the trajectory. It fits a negative binomial generalized additive model (GAM) for each gene, and performs inference on the parameters of the GAM.

License MIT + file LICENSE

Encoding UTF-8 **LazyData** false

URL https://statomics.github.io/tradeSeq/index.html

Depends R (>= 3.6)

Collate 'AllGenerics.R' 'utils.R' 'associationTest.R' 'clusterExpressionPatterns.R' 'conditionTest.R' 'data.R' 'diffEndTest.R' 'earlyDETest.R' 'evaluateK.R' 'fitGAM.R' 'getSmootherPvalues.R' 'getSmootherTestStats.R' 'nknots.R' 'patternTest.R' 'plotGeneCount.R' 'plotSmoothers.R' 'predictCells.R' 'predictSmooth.R' 'startVsEndTest.R'

RoxygenNote 7.1.1

Imports mgcv, edgeR, SingleCellExperiment, SummarizedExperiment, slingshot, magrittr, RColorBrewer, BiocParallel, Biobase, pbapply, ggplot2, princurve, methods, monocle, igraph, S4Vectors, tibble, Matrix, viridis, matrixStats

Suggests knitr, rmarkdown, testthat, covr, clusterExperiment

VignetteBuilder knitr

biocViews Clustering, Regression, TimeCourse, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, SingleCell, Transcriptomics, MultipleComparison, Visualization

BugReports https://github.com/statOmics/tradeSeq/issues

2 associationTest

git_url https://git.bioconductor.org/packages/tradeSeq
git_branch RELEASE_3_12
git_last_commit 867b90c
git_last_commit_date 2020-10-27
Date/Publication 2021-03-29
Author Koen Van den Berge [aut], Hector Roux de Bezieux [aut, cre] (https://orcid.org/0000-0002-1489-8339), Kelly Street [ctb], Lieven Clement [ctb],
Sandrine Dudoit [ctb]

Maintainer Hector Roux de Bezieux < hector.rouxdebezieux@berkeley.edu>

R topics documented:

associationTest		Perform statistical test to check whether gene expression is constant across pseudotime within a lineage											ant								
Index																					2'
	startVsEndTest						•			•			 		•						. 2:
	sds																				
	predictSmooth																				
	predictCells																				
	plotSmoothers																				
	plotGeneCount																				
	patternTest																				
	nknots																				
	getSmootherTestStat	ts											 		•						
	getSmootherPvalues																				
	gamList																				
	fitGAM																				
	extract_monocle_inf																				
	evaluateK																				
	earlyDETest																				. !
	diffEndTest												 								
	crv												 								. '
	countMatrix												 								. '
	conditionTest																				
	clusterExpressionPa																				
	celltype																				
	association lest												 								

Description

This test assesses whether average gene expression is associated with pseudotime.

celltype 3

Usage

```
associationTest(models, ...)
## S4 method for signature 'SingleCellExperiment'
associationTest(models, global = TRUE, lineages = FALSE, l2fc = 0)
## S4 method for signature 'list'
associationTest(models, global = TRUE, lineages = FALSE, l2fc = 0)
```

Arguments

models The fitted GAMs, typically the output from fitGAM.

... parameters including:

global If TRUE, test for all lineages simultaneously.

lineages If TRUE, test for all lineages independently.

12fc The log2 fold change threshold to test against. Note, that this will affect both

the global test and the pairwise comparisons.

Value

A matrix with the wald statistic, the number of degrees of freedom and the p-value associated with each gene for all the tests performed. If the testing procedure was unsuccessful, the procedure will return NA.

Examples

celltype

A vector defining cell types, used in the package vignette.

Description

This object contains a vector that define the cell type for each cell in the data described in Paul et al. (2015).

Usage

```
data(celltype)
```

Format

An object of class character of length 2660.

Details

#' @references Franziska Paul, Yaara Arkin, Amir Giladi, DiegoAdhemar Jaitin, Ephraim Kenigsberg, Hadas KerenShaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, Eyal David, Nadav Cohen, FeliciaKathrineBratt Lauridsen, Simon Haas, Andreas Schlitzer, Alexander Mildner, Florent Ginhoux, Steen Jung, Andreas Trumpp, BoTorben Porse, Amos Tanay, and Ido Amit. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7):1663–1677, 12 2015. ISSN 0092-8674. doi: 10.1016/J.CELL.2015.11.013. URL https://www.sciencedirect.com/ii/S0092867415014932?via

cluster Expression Patterns

Cluster gene expression patterns.

Description

Cluster genes in clusters that have similar expression patterns along all lineages in the trajectory. By default, this function uses the clusterExperiment package to do the clustering. If another clustering method is of interest, one can extract fitted values to use for clustering, see details in the vignette.

Usage

```
## S4 method for signature 'SingleCellExperiment'
clusterExpressionPatterns(
 models,
 nPoints,
 genes,
 reduceMethod = "PCA",
 nReducedDims = 10,
 minSizes = 6,
 ncores = 1,
  random.seed = 176201,
  verbose = TRUE,
)
## S4 method for signature 'list'
clusterExpressionPatterns(
 models,
 nPoints,
 genes,
  reduceMethod = "PCA",
 nReducedDims = 10,
 minSizes = 6,
 ncores = 1,
  random.seed = 176201,
  verbose = TRUE,
)
```

conditionTest 5

Arguments

models The fitted GAMs, typically the output from fitGAM.

nPoints The number of points to use for clustering the expression patterns.

genes A numerical or character vector specifying the genes from models that should

be clustered.

reduceMethod Dimensionality reduction method used before running the clustering methods.

Passed to RSEC. Defaults to PCA.

nReducedDims Number of dimensions kept after reduceMethod. Passed to RSEC.

minSizes Minimum size of clusters. Passed to RSEC.

ncores Number of cores to use. Passed to RSEC

random. seed Passed to RSEC verbose Passed to RSEC

... Additional arguments to be passed to RSEC.

Details

This method adopts the RSEC function from the clusterExperiment package to perform consensus clustering.

Value

A list containing the scaled fitted values yhatScaled(for plotting) and a clusterExperiment object, containing the clustering results.

Examples

conditionTest Assess differential expression patterns between conditions within a lineage.

Description

Assess differential expression patterns between conditions within a lineage.

Assess differential expression patterns between conditions within a lineage.

6 conditionTest

Usage

```
conditionTest(models, ...)

## S4 method for signature 'SingleCellExperiment'
conditionTest(
  models,
  global = TRUE,
  pairwise = FALSE,
  l2fc = 0,
  eigenThresh = 0.01
)
```

Arguments

models	The fitted GAMs, typically the output from fitGAM. For conditionTest, these are required to be a singleCellExperiment object.
	parameters including:
global	If TRUE, test for all pairwise comparisons simultaneously, i.e. test for DE between all conditions in all lineages.
pairwise	If TRUE, return output for all pairwise comparisons. Both global and pairwise can be TRUE.
12fc	The log2 fold change threshold to test against. Note, that this will affect both the global test and the pairwise comparisons.
eigenThresh	Eigenvalue threshold for inverting the variance-covariance matrix of the coefficients to use for calculating the Wald test statistics. Lower values are more lenient to adding more information but also decrease computational stability. This argument should in general not be changed by the user but is provided for back-compatability. Set to 1e-8 to reproduce results of older version of tradeSeq.

Value

A matrix with the wald statistic, the number of degrees of freedom and the p-value associated with each gene for all the tests performed.

```
## artificial example
data(crv, package = "tradeSeq")
data("countMatrix", package = "tradeSeq")
conditions <- factor(sample(1:2, size = ncol(countMatrix), replace = TRUE))
sce <- fitGAM(as.matrix(countMatrix), sds = crv, conditions = conditions)
res <- conditionTest(sce)</pre>
```

countMatrix 7

countMatrix

A count matrix, used in the package vignette.

Description

This object contains the gene expression counts from the data described in Paul et al. (2015).

Usage

data(countMatrix)

Format

An object of class dgCMatrix with 240 rows and 2660 columns.

Details

#' @references Franziska Paul, Yaara Arkin, Amir Giladi, DiegoAdhemar Jaitin, Ephraim Kenigsberg, Hadas KerenShaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, Eyal David, Nadav Cohen, FeliciaKathrineBratt Lauridsen, Simon Haas, Andreas Schlitzer, Alexander Mildner, Florent Ginhoux, Steen Jung, Andreas Trumpp, BoTorben Porse, Amos Tanay, and Ido Amit. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7):1663–1677, 12 2015. ISSN 0092-8674. doi: 10.1016/J.CELL.2015.11.013. URL https://www.sciencedirect.com/ii/S0092867415014932?via

crv

A SlingshotDataset object, used in the package vignette.

Description

This dataset contains the Slingshot trajectory from the data described in Paul et al. (2015).

Usage

data(crv)

Format

An object of class SlingshotDataSet of length 1.

References

Franziska Paul, Yaara Arkin, Amir Giladi, DiegoAdhemar Jaitin, Ephraim Kenigsberg, Hadas KerenShaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, Eyal David, Nadav Cohen, FeliciaKathrineBratt Lauridsen, Simon Haas, Andreas Schlitzer, Alexander Mildner, Florent Ginhoux, Steen Jung, Andreas Trumpp, BoTorben Porse, Amos Tanay, and Ido Amit. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7):1663–1677, 12 2015. ISSN 0092-8674. doi: 10.1016/J.CELL.2015.11.013. URL https://www.sciencedirect.com/science/article/ii/S0092867415014932?via

8 diffEndTest

diffEndTest	Perform statistical test to check for DE between final stages of every lineage.
-------------	---

Description

Assess differential expression between the average expression at the end points of lineages of a trajectory.

Usage

```
diffEndTest(models, ...)
## S4 method for signature 'SingleCellExperiment'
diffEndTest(models, global = TRUE, pairwise = FALSE, 12fc = 0)
## S4 method for signature 'list'
diffEndTest(models, global = TRUE, pairwise = FALSE, 12fc = 0)
```

Arguments

models	The fitted GAMs, typically the output from fitGAM.
	parameters including:
global	If TRUE, test for all pairwise comparisons simultaneously.
pairwise	If TRUE, test for all pairwise comparisons independently.
12fc	The log2 fold change threshold to test against. Note, that this will affect both the global test and the pairwise comparisons.

Details

The 12fc argument allows to test against a particular fold change threshold. For example, if the interest lies in discovering genes that are differentially expressed with an absolute log2 fold change cut off above 1, i.e. a fold change of at least 2, then one can test for this by setting 12fc=1 as argument to the function.

Value

A matrix with the wald statistic, the number of df and the p-value associated with each gene for all the tests performed. Also, for each possible pairwise comparision, the observed log fold changes. If the testing procedure was unsuccessful, the procedure will return NA test statistics, fold changes and p-values.

```
data(gamList, package = "tradeSeq")
diffEndTest(gamList, global = TRUE, pairwise = TRUE)
```

earlyDETest 9

earlyDETest

Perform test of early differences between lineages

Description

Perform test of differential expression patterns between lineages in a user-defined region based on the knots of the smoothers.

Usage

```
earlyDETest(models, ...)
## S4 method for signature 'SingleCellExperiment'
earlyDETest(
  models,
  global = TRUE,
  pairwise = FALSE,
  knots = NULL,
  nPoints = 2 * nknots(models),
  12fc = 0,
  eigenThresh = 0.01
## S4 method for signature 'list'
earlyDETest(
 models,
  global = TRUE,
  pairwise = FALSE,
  knots = NULL,
  nPoints = 2 * nknots(models),
  12fc = 0,
  eigenThresh = 0.01
```

Arguments

models	The fitted GAMs, typically the output from fitGAM.
	parameters including:
global	If TRUE, test for all pairwise comparisons simultaneously.
pairwise	If TRUE, test for all pairwise comparisons independently.
knots	A vector of length 2 specifying the knots before and after the region of interest.
nPoints	The number of points to be compared between lineages. Defaults to twice the number of knots
12fc	The log2 fold change threshold to test against. Note, that this will affect both the global test and the pairwise comparisons.
eigenThresh	Eigenvalue threshold for inverting the variance-covariance matrix of the coefficients to use for calculating the Wald test statistics. Lower values are more lenient to adding more information but also decrease computational stability. This argument should in general not be changed by the user but is provided for

10 evaluateK

back-compatability. Set to 1e-8 to reproduce results of older version of 'trade-Seq'.

Details

To help the user in choosing which knots to use when defining the branching, the plotGeneCount function has a models optional parameter that can be used to visualize where the knots are.

Value

A matrix with the wald statistic, the number of df and the p-value associated with each gene for all the tests performed. Also, for each possible pairwise comparision, the observed log fold changes. If the testing procedure was unsuccessful, the procedure will return NA test statistics, fold changes and p-values.

Examples

```
data(gamList, package = "tradeSeq")
earlyDETest(gamList, knots = c(1, 2), global = TRUE, pairwise = TRUE)
```

evaluateK

Evaluate the optimal number of knots required for fitGAM.

Description

Evaluate the optimal number of knots required for fitGAM.

Evaluate an appropriate number of knots.

Usage

```
evaluateK(counts, ...)
## S4 method for signature 'matrix'
evaluateK(
  counts,
  k = 3:10,
  nGenes = 500,
  sds = NULL,
  pseudotime = NULL,
  cellWeights = NULL,
  U = NULL,
  conditions = NULL,
  plot = TRUE,
  weights = NULL,
  offset = NULL,
  aicDiff = 2,
  verbose = TRUE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  family = "nb",
```

evaluateK 11

```
gcv = FALSE,
## S4 method for signature 'dgCMatrix'
evaluateK(
  counts,
  k = 3:10,
  nGenes = 500,
  sds = NULL,
  pseudotime = NULL,
  cellWeights = NULL,
  plot = TRUE,
  U = NULL,
  weights = NULL,
  offset = NULL,
  aicDiff = 2,
  verbose = TRUE,
  conditions = NULL,
  control = mgcv::gam.control(),
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  family = "nb",
  gcv = FALSE,
)
## S4 method for signature 'SingleCellExperiment'
evaluateK(
  counts,
  k = 3:10,
  nGenes = 500,
  sds = NULL,
  pseudotime = NULL,
  cellWeights = NULL,
  plot = TRUE,
  U = NULL,
  weights = NULL,
  offset = NULL,
  aicDiff = 2,
  verbose = TRUE,
  conditions = NULL,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  family = "nb",
  gcv = FALSE,
)
## S4 method for signature 'CellDataSet'
evaluateK(
```

12 evaluateK

```
counts,
 k = 3:10.
 nGenes = 500,
  sds = NULL,
 pseudotime = NULL,
 cellWeights = NULL,
 plot = TRUE,
 U = NULL
 weights = NULL,
 offset = NULL,
 aicDiff = 2,
 verbose = TRUE,
 conditions = NULL,
 parallel = FALSE,
 BPPARAM = BiocParallel::bpparam(),
 control = mgcv::gam.control(),
 family = "nb",
 gcv = FALSE,
)
```

Arguments

counts The count matrix, genes in rows and cells in columns.

... parameters including:

k The range of knots to evaluate. '3:10' by default. See details.

nGenes The number of genes to use in the evaluation. Genes will be randomly selected.

500 by default.

sds Slingshot object containing the lineages.

pseudotime a matrix of pseudotime values, each row represents a cell and each column rep-

resents a lineage.

cellWeights a matrix of cell weights defining the probability that a cell belongs to a particular

lineage. Each row represents a cell and each column represents a lineage.

U The design matrix of fixed effects. The design matrix should not contain an

intercept to ensure identifiability.

conditions This argument is in beta phase and should be used carefully. If each lineage con-

sists of multiple conditions, this argument can be used to specify the conditions.

tradeSeq will then fit a condition-specific smoother for every lineage.

plot Whether to display diagnostic plots. Default to TRUE.

weights Optional: a matrix of weights with identical dimensions as the counts matrix.

Usually a matrix of zero-inflation weights.

offset Optional: the offset, on log-scale. If NULL, TMM is used to account for differ-

ences in sequencing depth, see fitGAM.

aicDiff Used for selecting genes with significantly varying AIC values over the range

of evaluated knots to make the barplot output. Default is set to 2, meaning that only genes whose AIC range is larger than 2 will be used to check for the optimal number of knots through the barplot visualization that is part of the output of this

function.

verbose logical, should progress be verbose?

extract_monocle_info

parallel	Logical, defaults to FALSE. Set to TRUE if you want to parallellize the fitting.
BPPARAM	object of class bpparamClass that specifies the back-end to be used for computations. See bpparam in $BiocParallel$ package for details.
control	Control object for GAM fitting, see mgcv::gam.control().
family	The distribution assumed, currently only "nb" (negative binomial) is supported.
gcv	(In development). Logical, should a GCV score also be returned?

Details

The number of parameter to evaluate (and therefore the runtime) scales in k * the number of lineages. Morevoer, we have found that, in practice, values of k above 12-15 rarely lead to improved result, not matter the complexity of the trajectory being considered. As such, we recommand that user proceed with care when setting k to value higher than 15.

Value

A plot of average AIC value over the range of selected knots, and a matrix of AIC and GCV values for the selected genes (rows) and the range of knots (columns).

Examples

extract_monocle_info Extract info from Monocle models

Description

This function extracts info that will be used downstream to make CellDataSet objects compatible with a tradeSeq analysis

Usage

```
extract_monocle_info(cds)
```

Arguments

cds A CellDataSet object.

Details

For now, this only works for the DDRTree dimentionality reduction. It is the one recommanded by the Monocle developers.

14 fitGAM

Value

A list with four objects. A pseudotime matrix and a cellWeights matrix that can be used as input to fitGAM or evaluateK, the reduced dimension matrix for the cells, and a list of length the number of lineages, containing the reduced dimension of each lineage.

fitGAM

fitGAM

Description

This fits the NB-GAM model as described in Van den Berge et al.[2019]. There are two ways to provide the required input in fitGAM. See Details and the vignette.

Usage

```
fitGAM(counts, ...)
## S4 method for signature 'matrix'
fitGAM(
  counts,
  sds = NULL,
  pseudotime = NULL,
  cellWeights = NULL,
  conditions = NULL,
  U = NULL
  genes = seq_len(nrow(counts)),
  weights = NULL,
  offset = NULL,
  nknots = 6,
  verbose = TRUE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  sce = TRUE,
  family = "nb",
  gcv = FALSE
## S4 method for signature 'dgCMatrix'
fitGAM(
  counts,
  sds = NULL,
  pseudotime = NULL,
  cellWeights = NULL,
  U = NULL,
  genes = seq_len(nrow(counts)),
  weights = NULL,
  offset = NULL,
  nknots = 6,
  verbose = TRUE,
```

fitGAM

```
parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  sce = TRUE,
  family = "nb",
  gcv = FALSE
## S4 method for signature 'SingleCellExperiment'
fitGAM(
  counts,
  U = NULL,
  genes = seq_len(nrow(counts)),
  conditions = NULL,
  weights = NULL,
  offset = NULL,
  nknots = 6,
  verbose = TRUE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  sce = TRUE,
  family = "nb",
  gcv = FALSE
## S4 method for signature 'CellDataSet'
fitGAM(
  counts,
  U = NULL,
  genes = seq_len(nrow(counts)),
  weights = NULL,
  offset = NULL,
  nknots = 6,
  verbose = TRUE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  control = mgcv::gam.control(),
  sce = TRUE,
  family = "nb",
  gcv = FALSE
)
```

Arguments

counts The count matrix of expression values, with genes in rows and cells in columns. Can be a matrix or a sparse matrix.

... parameters including:

sds an object of class SlingshotDataSet, typically obtained after running Slingshot. If this is provided, pseudotime and cellWeights arguments are derived from this object.

16 fitGAM

pseudotime	A matrix of pseudotime values, each row represents a cell and each column represents a lineage.
cellWeights	A matrix of cell weights defining the probability that a cell belongs to a particular lineage. Each row represents a cell and each column represents a lineage. If only a single lineage, provide a matrix with one column containing all values of 1.
conditions	This argument is in beta phase and should be used carefully. If each lineage consists of multiple conditions, this argument can be used to specify the conditions. tradeSeq will then fit a condition-specific smoother for every lineage.
U	The design matrix of fixed effects. The design matrix should not contain an intercept to ensure identifiability.
genes	The genes on which to run fitGAM. Default to all the genes. If only a subset of the genes is indicated, normalization will be done using all the genes but the smoothers will be computed only for the subset.
weights	A matrix of weights with identical dimensions as the counts matrix. Usually a matrix of zero-inflation weights.
offset	The offset, on log-scale. If NULL, TMM is used to account for differences in sequencing depth., see edgeR::calcNormFactors. Alternatively, this may also be a vector with length equal to the number of cells.
nknots	Number of knots used to fit the GAM. Defaults to 6. It is recommended to use the 'evaluateK' function to guide in selecting an appropriate number of knots.
verbose	Logical, should progress be printed?
parallel	Logical, defaults to FALSE. Set to TRUE if you want to parallellize the fitting.
BPPARAM	object of class bpparamClass that specifies the back-end to be used for computations. See bpparam in BiocParallel package for details.
control	Variables to control fitting of the GAM, see gam.control.
sce	Logical: should output be of SingleCellExperiment class? This is recommended to be TRUE. If sds argument is specified, it will always be set to TRUE
family	The assumed distribution for the response. Is set to "nb" by default.
gcv	(In development). Logical, should a GCV score also be returned?

Details

fitGAM supports four different ways to input the required objects:

- "Count matrix, matrix of pseudotime and matrix of cellWeights." Input count matrix using counts argument and pseudotimes and cellWeights as a matrix, with number of rows equal to number of cells, and number of columns equal to number of lineages.
- "Count matrix and Slingshot input."Input count matrix using counts argument and Slingshot object using sds argument.
- "SingleCellExperiment Object after running slingshot on the object." Input SingleCellExperiment Object using counts argument.
- "CellDataSet object after running the orderCells function." Input CellDataSet Object using counts argument.

Value

If sce=FALSE, returns a list of length equal to the number of genes (number of rows of counts). Each element of the list is either a <code>gamObject</code> if the fiting procedure converged, or an error message. If <code>sce=TRUE</code>, returns a <code>singleCellExperiment</code> object with the <code>tradeSeq</code> results stored in the <code>rowData</code>, <code>colData</code> and <code>metadata</code>.

gamList 17

Examples

gamList

A list of GAM models, used to demonstrate the various tests.

Description

A list of 11 gamObject obtained by fitting 10 genes on 15 cells randomly assigned to lineages with random pseudotimes.

Usage

```
data(gamList)
```

Format

Can be re-obtained by runing the code in the example section of fitGAM.

getSmootherPvalues

Get smoother p-value as returned by mgcv.

Description

Return smoother p-values from the mgcv package.

Usage

```
getSmootherPvalues(models)
```

Arguments

models

the GAM models, typically the output from fitGAM. Note that this function only works when models is a list.

Value

a matrix with the p-value associated with each lineage's smoother. The matrix has one row per gene where the fitting procedure converged.

```
data(gamList, package = "tradeSeq")
getSmootherPvalues(gamList)
```

18 nknots

```
getSmootherTestStats Get smoother Chi-squared test statistics.
```

Description

Return test statistics from the mgcv package.

Usage

```
getSmootherTestStats(models)
```

Arguments

models

the GAM models, typically the output from fitGAM. Note that this function only works when models is a list.

Value

a matrix with the wald statistics associated with each lineage's smoother. The matrix has one row per gene where the fitting procedure converged.

Examples

```
data(gamList, package = "tradeSeq")
getSmootherPvalues(gamList)
```

nknots

knots

Description

Get the number of knots used for the fit

Usage

```
nknots(models, ...)
## S4 method for signature 'SingleCellExperiment'
nknots(models)
## S4 method for signature 'list'
nknots(models)
```

Arguments

```
models The fitted GAMs, typically the output from fitGAM.
... parameters including:
```

Value

A numeric, the number of nknots

patternTest 19

Examples

```
data(gamList, package = "tradeSeq")
nknots(gamList)
```

patternTest

Assess differential expression pattern between lineages.

Description

Assess differences in expression patterns between lineages.

Usage

```
patternTest(models, ...)
## S4 method for signature 'list'
patternTest(
  models,
  global = TRUE,
  pairwise = FALSE,
  nPoints = 2 * nknots(models),
  12fc = 0,
  eigenThresh = 0.01
## S4 method for signature 'SingleCellExperiment'
patternTest(
  models,
  global = TRUE,
  pairwise = FALSE,
  nPoints = 2 * nknots(models),
  12fc = 0,
  eigenThresh = 0.01
)
```

Arguments

models	The fitted GAMs, typically the output from fitGAM.
	parameters including:
global	If TRUE, test for all pairwise comparisons simultaneously. If models contains conditions (i.e. fitGAM was run with the conditions argument), then we compare the within-lineage average across conditions, between lineages.
pairwise	If TRUE, return output for all pairwise comparisons made.
nPoints	The number of points to be compared between lineages. Defaults to twice the number of knots
12fc	The log2 fold change threshold to test against. Note, that this will affect both the global test and the pairwise comparisons.

20 plotGeneCount

eigenThresh

Eigenvalue threshold for deciding on the rank of the variance-covariance matrix of the contrasts defined by 'patternTest', and to use for calculating the Wald test statistics. Lower values are more lenient to adding more information but also decrease computational stability. This argument should in general not be changed by the user but is provided for back-compatability. Set to 1e-8 to reproduce results of older version of 'tradeSeq'.

Value

A matrix with the wald statistic, the number of df and the p-value associated with each gene for all the tests performed. Also, for each possible pairwise comparision, the observed log fold changes. If the testing procedure was unsuccessful, the procedure will return NA test statistics, fold changes and p-values.

Examples

```
data(gamList, package = "tradeSeq")
patternTest(gamList, global = TRUE, pairwise = TRUE)
```

plotGeneCount

Plot gene expression in reduced dimension.

Description

Plot the gene in reduced dimensional space.

Usage

```
plotGeneCount(curve, ...)
## S4 method for signature 'SlingshotDataSet'
plotGeneCount(
  curve,
  counts = NULL,
  gene = NULL,
  clusters = NULL,
  models = NULL,
  title = NULL
## S4 method for signature 'SingleCellExperiment'
plotGeneCount(
  curve,
  counts = NULL,
  gene = NULL,
  clusters = NULL,
  models = NULL,
  title = NULL
## S4 method for signature 'CellDataSet'
```

plotGeneCount 21

```
plotGeneCount(
   curve,
   counts = NULL,
   gene = NULL,
   clusters = NULL,
   models = NULL,
   title = NULL
)
```

Arguments

curve	One of three
	• A SlingshotDataSet object. The output from trajectory inference using Slingshot.
	• A SingleCellExperiment object. The output from trajectory inference using Slingshot.
	• A CellDataset object.
• • •	parameters including:
counts	The count matrix, genes in rows and cells in columns. Only needed if the input is of the type SlingshotDataSet and the gene argument is not NULL.
gene	The name of gene for which you want to plot the count or the row number of that gene in the count matrix. Alternatively, one can specify the clusters argument.
clusters	The assignation of each cell to a cluster. Used to color the plot. Either clusters or gene and counts must be supplied.
models	The fitted GAMs, typically the output from fitGAM. Used to display the knots. Does not work with a CellDataset object as input.
title	Title for the plot.

Details

If both gene and clusters arguments are supplied, the plot will be colored according to gene count level. If none are provided, the function will fail. When a CellDataset object is provided as input, the function relies on the plot_cell_trajectory function

Value

```
A ggplot object
```

```
set.seed(97)
library(slingshot)
data(crv, package="tradeSeq")
data(countMatrix, package="tradeSeq")
rd <- slingshot::reducedDim(crv)
cl <- kmeans(rd, centers = 7)$cluster
lin <- slingshot::getLineages(rd, clusterLabels = cl, start.clus = 4)
crv <- slingshot::getCurves(lin)
counts <- as.matrix(countMatrix)
gamList <- fitGAM(counts = counts,
    pseudotime = slingPseudotime(crv, na = FALSE),
    cellWeights = slingCurveWeights(crv))
plotGeneCount(crv, counts, gene = "Mpo")</pre>
```

22 plotSmoothers

plotSmoothers

Plot the log-transformed counts and the fitted values for a particular gene along all lineages

Description

Plot the smoothers estimated by tradeSeq.

Usage

```
plotSmoothers(models, ...)
## S4 method for signature 'gam'
plotSmoothers(
  models,
  nPoints = 100,
  1wd = 2,
  size = 2/3,
  xlab = "Pseudotime",
  ylab = "Log(expression + 1)",
  border = TRUE,
  alpha = 1,
  sample = 1
)
## S4 method for signature 'SingleCellExperiment'
plotSmoothers(
  models,
  counts,
  gene,
  nPoints = 100,
  1wd = 2,
  size = 2/3,
  xlab = "Pseudotime",
  ylab = "Log(expression + 1)",
  border = TRUE,
  alpha = 1,
  sample = 1,
  pointCol = NULL,
  plotLineages = TRUE
)
```

Arguments

models	Either the SingleCellExperiment object obtained after running fitGAM, or the specific GAM model for the corresponding gene, if working with the list output of tradeSeq.
	parameters including:
nPoints	The number of points used to extrapolate the fit. Defaults to 100.
lwd	Line width of the smoother. Passed to geom_line.

predictCells 23

size Character expansion of the data points. Passed to geom_point. xlab x-axis label. Passed to labs. y-axis label. Passed to labs. ylab border Logical: should a white border be drawn around the mean smoother. alpha Numeric between 0 and 1, determines the transparency of data points, see scale_color_viridis_d. Numeric between 0 and 1, use to subsample the cells when there are too many sample so that it can plot faster. counts The matrix of gene expression counts. Gene name or row in count matrix of gene to plot. gene Plotting colors for each cell. Can be either character vector of length 1, denoting pointCol a variable in the colData(models) to color cells by, or a vector of length equal to the number of cells.

Logical, should the mean smoothers for each lineage be plotted?

Value

A ggplot object

plotLineages

Examples

```
data(gamList, package = "tradeSeq")
plotSmoothers(gamList[[4]])
```

Description

Get fitted values for each cell.

Usage

```
predictCells(models, ...)
## S4 method for signature 'SingleCellExperiment'
predictCells(models, gene)
## S4 method for signature 'list'
predictCells(models, gene)
```

Arguments

models Either the SingleCellExperiment object obtained after running fitGAM, or the

specific GAM model for the corresponding gene, if working with the list output

of tradeSeq.

... parameters including:

gene Gene name of gene for which to extract fitted values.

24 predictSmooth

Value

A vector of fitted values.

Examples

```
data(gamList, package = "tradeSeq")
predictCells(models = gamList, gene = 1)
```

predictSmooth

predictSmooth

Description

Get smoothers estimated by tradeSeq along a grid. This function does not return fitted values but rather the predicted mean smoother, for a user-defined grid of points.

Usage

```
predictSmooth(models, ...)
## S4 method for signature 'SingleCellExperiment'
predictSmooth(models, gene, nPoints = 100, tidy = TRUE)
## S4 method for signature 'list'
predictSmooth(models, gene, nPoints = 100)
```

Arguments

models	Either the SingleCellExperiment object obtained after running fitGAM, or the specific GAM model for the corresponding gene, if working with the list output of tradeSeq.
	parameters including:
gene	Either a vector of gene names or an integer vector, corresponding to the row(s) of the gene(s).
nPoints	The number of points used to create the grid along the smoother for each lineage. Defaults to 100.
tidy	Logical: return tidy output. If TRUE, returns a data. frame specifying lineage, gene, pseudotime and value of estimated smoother. If FALSE, returns matrix of predicted smoother values, where each row is a gene and each column is a point on the uniform grid along the lineage. For example, if the trajectory consists of

gene, pseudotime and value of estimated smoother. If FALSE, returns matrix of predicted smoother values, where each row is a gene and each column is a point on the uniform grid along the lineage. For example, if the trajectory consists of 2 lineages and nPoints=100, then the returned matrix will have 2*100 columns, where the first 100 correspond to the first lineage and columns 101-200 to the

second lineage.

Value

A matrix with estimated averages.

```
data(gamList, package = "tradeSeq")
predictSmooth(models = gamList, gene = 1)
```

sds 25

sds

A SlingshotDataset object, used in the package unit tests.

Description

This dataset contains the toy example from the Slingshot R package vignette.

Usage

```
data(sds)
```

Format

An object of class SlingshotDataSet of length 1.

Source

https://bioconductor.org/packages/release/bioc/html/slingshot.html

startVsEndTest

Perform statistical test to check for DE between starting point and the end stages of every lineage

Description

This function assesses differential expression between the average expression of the start and end points of a lineage.

Usage

```
startVsEndTest(models, ...)
## S4 method for signature 'SingleCellExperiment'
startVsEndTest(
  models,
  global = TRUE,
  lineages = FALSE,
  pseudotimeValues = NULL,
  12fc = 0
)
## S4 method for signature 'list'
startVsEndTest(
  models,
  global = TRUE,
  lineages = FALSE,
  pseudotimeValues = NULL,
  12fc = 0
)
```

26 startVsEndTest

Arguments

models The fitted GAMs, typically the output from fitGAM.

... parameters including:

global If TRUE, test for all lineages simultaneously.

lineages If TRUE, test for all lineages independently.

pseudotimeValues

A vector of length 2, specifying two pseudotime values to be compared against each other, for every lineage of the trajectory. @details Note that this test assumes that all lineages start at a pseudotime value of zero, which is the starting

point against which the end point is compared.

12fc The log2 fold change threshold to test against. Note, that this will affect both

the global test and the pairwise comparisons.

Value

A matrix with the wald statistic, the number of df and the p-value associated with each gene for all the tests performed. Also, for each possible pairwise comparision, the observed log fold changes. If the testing procedure was unsuccessful, the procedure will return NA test statistics, fold changes and p-values.

```
data(gamList, package = "tradeSeq")
startVsEndTest(gamList, global = TRUE, lineages = TRUE)
```

Index

```
* datasets
                                                                                                  fitGAM, CellDataSet-method (fitGAM), 14
        celltype, 3
                                                                                                  fitGAM, dgCMatrix-method (fitGAM), 14
        countMatrix, 7
                                                                                                  fitGAM, matrix-method (fitGAM), 14
        crv, 7
                                                                                                  fitGAM, SingleCellExperiment-method
        gamList, 17
                                                                                                                   (fitGAM), 14
        sds, 25
                                                                                                  gamList, 17
associationTest, 2
                                                                                                  gamObject, 16, 17
associationTest,list-method
                                                                                                  geom_line, 22
                 (associationTest), 2
                                                                                                  geom_point, 23
association Test, Single Cell Experiment-method\\
                                                                                                  getSmootherPvalues, 17
                 (associationTest), 2
                                                                                                  getSmootherTestStats, 18
                                                                                                  ggplot, 21, 23
celltype, 3
clusterExpressionPatterns, 4
                                                                                                  labs, 23
clusterExpressionPatterns, list-method
                 (clusterExpressionPatterns), 4
                                                                                                  nknots, 18
\verb|clusterExpressionPatterns,SingleCellExperiments| \verb|fixed for the property of the property 
                 (clusterExpressionPatterns), 4
                                                                                                  nknots, SingleCellExperiment-method
conditionTest, 5
                                                                                                                   (nknots), 18
conditionTest,SingleCellExperiment-method
                 (conditionTest), 5
                                                                                                  patternTest, 19
countMatrix, 7
                                                                                                  patternTest, list-method (patternTest),
crv, 7
                                                                                                  patternTest,SingleCellExperiment-method
diffEndTest, 8
                                                                                                                   (patternTest), 19
diffEndTest, list-method (diffEndTest), 8
                                                                                                  plot_cell_trajectory, 21
diffEndTest,SingleCellExperiment-method
                                                                                                  plotGeneCount, 10, 20
                 (diffEndTest), 8
                                                                                                  plotGeneCount, CellDataSet-method
                                                                                                                   (plotGeneCount), 20
earlyDETest, 9
                                                                                                  plotGeneCount, SingleCellExperiment-method
earlyDETest,list-method(earlyDETest),9
                                                                                                                   (plotGeneCount), 20
earlyDETest,SingleCellExperiment-method
                                                                                                  plotGeneCount,SlingshotDataSet-method
                 (earlyDETest), 9
                                                                                                                   (plotGeneCount), 20
evaluateK, 10, 14
                                                                                                  plotSmoothers, 22
evaluateK, CellDataSet-method
                                                                                                  plotSmoothers, gam-method
                 (evaluateK), 10
                                                                                                                   (plotSmoothers), 22
evaluateK, dgCMatrix-method (evaluateK),
                                                                                                  plotSmoothers, SingleCellExperiment-method
                                                                                                                   (plotSmoothers), 22
evaluateK, matrix-method (evaluateK), 10
                                                                                                  predictCells, 23
evaluateK, SingleCellExperiment-method
                                                                                                  predictCells,list-method
                 (evaluateK), 10
                                                                                                                   (predictCells), 23
extract_monocle_info, 13
                                                                                                  predictCells,SingleCellExperiment-method
fitGAM, 3, 5, 6, 8, 9, 14, 14, 17-19, 21, 26
                                                                                                                   (predictCells), 23
```

28 INDEX