
MLInterfaces 2.0 – a new design

VJ Carey

October 27, 2020

1 Introduction

MLearn, the workhorse method of MLInterfaces, has been streamlined to support simpler
development.

In 1.*, MLearn included a substantial switch statement, and the external learning
function was identified by a string. Many massage tasks were wrapped up in switch case
elements devoted to each method. MLearn returned instances of MLOutput, but these
had complicated subclasses.

MLearn now takes a signature c("formula", "data.frame", "learnerSchema",

"numeric"), with the expectation that extra parameters captured in ... go to the fitting
function. The complexity of dealing with expectations and return values of different
machine learning functions is handled primarily by the learnerSchema instances. The
basic realizations are that

� most learning functions use the formula/data idiom, and additional parameters
can go in ...

� the problem of converting from the function’s output structures (typically lists, but
sometimes also objects with attributes) to the uniform structure delived by MLearn
should be handled as generically as possible, but specialization will typically be
needed

� the conversion process can be handled in most cases using only the native R object
returned by the learning function, the data, and the training index set.

� some functions, like knn, are so idiosyncratic (lacking formula interface or predict
method) that special software is needed to adapt MLearn to work with them

Thus we have defined a learnerSchema class,

> library(MLInterfaces)

> library(gbm)

> getClass("learnerSchema")

1

Class "learnerSchema" [package "MLInterfaces"]

Slots:

Name: packageName mlFunName converter predicter

Class: character character function function

along with a constructor used to define a family of schema objects that help MLearn
carry out specific tasks of learning.

2 Some examples

We define interface schema instances with suffix ”I”.
randomForest has a simple converter:

> randomForestI@converter

function (obj, data, trainInd)

{

teData = data[-trainInd,]

trData = data[trainInd,]

tepr = predict(obj, teData, type = "response")

tesco = predict(obj, teData, type = "prob")

trpr = predict(obj, trData, type = "response")

trsco = predict(obj, trData, type = "prob")

names(tepr) = rownames(teData)

names(trpr) = rownames(trData)

new("classifierOutput", testPredictions = factor(tepr), testScores = tesco,

trainPredictions = factor(trpr), trainScores = trsco,

RObject = obj)

}

<bytecode: 0x55aa3c028b78>

<environment: namespace:MLInterfaces>

The job of the converter is to populate as much as the classifierOutput instance as
possible. For something like nnet, we can do more:

> nnetI@converter

function (obj, data, trainInd)

{

teData = data[-trainInd,]

trData = data[trainInd,]

2

tepr = predict(obj, teData, type = "class")

trpr = predict(obj, trData, type = "class")

names(tepr) = rownames(teData)

names(trpr) = rownames(trData)

new("classifierOutput", testPredictions = factor(tepr), testScores = predict(obj,

teData), trainScores = predict(obj, trData), trainPredictions = factor(trpr),

RObject = obj)

}

<bytecode: 0x55aa35a08d88>

<environment: namespace:MLInterfaces>

We can get posterior class probabilities.
To obtain the predictions necessary for confusionMatrix computation, we may need

the converter to know about parameters used in the fit. Here, closures are used.

> knnI(k=3, l=2)@converter

function (obj, data, trainInd)

{

kpn = names(obj$traindat)

teData = data[-trainInd, kpn]

trData = data[trainInd, kpn]

tepr = predict(obj, teData, k, l)

trpr = predict(obj, trData, k, l)

names(tepr) = rownames(teData)

names(trpr) = rownames(trData)

new("classifierOutput", testPredictions = factor(tepr), testScores = attr(tepr,

"prob"), trainPredictions = factor(trpr), trainScores = attr(trpr,

"prob"), RObject = obj)

}

<bytecode: 0x55aa3a2b8d30>

<environment: 0x55aa3bf81c38>

So we can have the following calls:

> library(MASS)

> data(crabs)

> kp = sample(1:200, size=120)

> rf1 = MLearn(sp~CL+RW, data=crabs, randomForestI, kp, ntree=100)

> rf1

MLInterfaces classification output container

The call was:

3

MLearn(formula = sp ~ CL + RW, data = crabs, .method = randomForestI,

trainInd = kp, ntree = 100)

Predicted outcome distribution for test set:

B O

41 39

Summary of scores on test set (use testScores() method for details):

B O

0.506375 0.493625

> RObject(rf1)

Call:

randomForest(formula = formula, data = trdata, ntree = 100)

Type of random forest: classification

Number of trees: 100

No. of variables tried at each split: 1

OOB estimate of error rate: 46.67%

Confusion matrix:

B O class.error

B 28 26 0.4814815

O 30 36 0.4545455

> knn1 = MLearn(sp~CL+RW, data=crabs, knnI(k=3,l=2), kp)

> knn1

MLInterfaces classification output container

The call was:

MLearn(formula = sp ~ CL + RW, data = crabs, .method = knnI(k = 3,

l = 2), trainInd = kp)

Predicted outcome distribution for test set:

B O

50 28

Summary of scores on test set (use testScores() method for details):

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5000 0.6667 0.6667 0.7750 1.0000 1.0000

4

3 Making new interfaces

3.1 A simple example: ada

The ada method of the ada package has a formula interface and a predict method. We
can create a learnerSchema on the fly, and then use it:

> adaI = makeLearnerSchema("ada", "ada", standardMLIConverter)

> arun = MLearn(sp~CL+RW, data=crabs, adaI, kp)

> confuMat(arun)

predicted

given B O

B 30 16

O 14 20

> RObject(arun)

Call:

ada(formula, data = trdata)

Loss: exponential Method: discrete Iteration: 50

Final Confusion Matrix for Data:

Final Prediction

True value B O

B 40 14

O 16 50

Train Error: 0.25

Out-Of-Bag Error: 0.258 iteration= 42

Additional Estimates of number of iterations:

train.err1 train.kap1

48 48

What is the standardMLIConverter?

> standardMLIConverter

function (obj, data, trainInd)

{

5

teData = data[-trainInd,]

trData = data[trainInd,]

tepr = predict(obj, teData)

trpr = predict(obj, trData)

names(tepr) = rownames(teData)

names(trpr) = rownames(trData)

new("classifierOutput", testPredictions = factor(tepr), trainPredictions = factor(trpr),

RObject = obj)

}

<bytecode: 0x55aa37388ef8>

<environment: namespace:MLInterfaces>

3.2 Dealing with gbm

The gbm package workhorse fitter is gbm. The formula input must have a numeric
response, and the predict method only returns a numeric vector. There is also no
namespace. We introduced a gbm2 function

> gbm2

function (formula, data, ...)

{

requireNamespace("gbm")

mf = model.frame(formula, data)

resp = model.response(mf)

if (!is(resp, "factor"))

stop("dependent variable must be a factor in MLearn")

if (length(levels(resp)) != 2)

stop("dependent variable must have two levels")

nresp = as.numeric(resp == levels(resp)[2])

fwn = formula

fwn[[2]] = as.name("nresp")

newf = as.formula(fwn)

data$nresp = nresp

ans = gbm(newf, data = data, ...)

class(ans) = "gbm2"

ans

}

<bytecode: 0x55aa418436e8>

<environment: namespace:MLInterfaces>

that requires a two-level factor response and recodes for use by gbm. It also returns
an S3 object of newly defined class gbm2, which only returns a factor. At this stage,

6

we could use a standard interface, but the prediction values will be unpleasant to work
with. Furthermore the predict method requires specification of n.trees. So we pass a
parameter n.trees.pred.

> BgbmI

function (n.trees.pred = 1000, thresh = 0.5)

{

makeLearnerSchema("MLInterfaces", "gbm2", MLIConverter.Bgbm(n.trees.pred,

thresh))

}

<bytecode: 0x55aa414d6908>

<environment: namespace:MLInterfaces>

> set.seed(1234)

> gbrun = MLearn(sp~CL+RW+FL+CW+BD, data=crabs, BgbmI(n.trees.pred=25000,thresh=.5),

+ kp, n.trees=25000,

+ distribution="bernoulli", verbose=FALSE)

> gbrun

MLInterfaces classification output container

The call was:

MLearn(formula = sp ~ CL + RW + FL + CW + BD, data = crabs, .method = BgbmI(n.trees.pred = 25000,

thresh = 0.5), trainInd = kp, n.trees = 25000, distribution = "bernoulli",

verbose = FALSE)

Predicted outcome distribution for test set:

FALSE TRUE

49 31

Summary of scores on test set (use testScores() method for details):

Min. 1st Qu. Median Mean 3rd Qu. Max.

-107.178 -7.089 -1.113 -6.598 7.120 62.418

> confuMat(gbrun)

predicted

given FALSE TRUE

B 44 2

O 5 29

> summary(testScores(gbrun))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-107.178 -7.089 -1.113 -6.598 7.120 62.418

7

3.3 A harder example: rda

As of Jan 2020, rda has been proposed for archiving at CRAN. While maintenance of
rda is being contemplated, the computations in this section are conditional on having
an installed instance of rda.

The rda package includes the rda function for regularized discriminant analysis, and
rda.cv for aiding in tuning parameter selection. No formula interface is supported,
and the predict method delivers arrays organized according to the tuning parameter
space search. Bridge work needs to be done to support the use of MLearn with this
methodology.

First we create a wrapper that uses formula-data for the rda.cv function:

> if (requireNamespace("rda", quietly=TRUE)) {

+ library("rda")

+ rdaCV = function(formula, data, ...) {

+ passed = list(...)

+ if ("genelist" %in% names(passed)) stop("please don't supply genelist parameter.")

+ # data input to rda needs to be GxN

+ x = model.matrix(formula, data)

+ if ("(Intercept)" %in% colnames(x))

+ x = x[, -which(colnames(x) %in% "(Intercept)")]

+ x = t(x)

+ mf = model.frame(formula, data)

+ resp = as.numeric(factor(model.response(mf)))

+ run1 = rda(x, resp, ...)

+ rda.cv(run1, x, resp)

+ }

+ }

We also create a wrapper for a non-cross-validated call, where alpha and delta pa-
rameters are specified:

> if (requireNamespace("rda", quietly=TRUE)) {

+ rdaFixed = function(formula, data, alpha, delta, ...) {

+ passed = list(...)

+ if ("genelist" %in% names(passed)) stop("please don't supply genelist parameter.")

+ # data input to rda needs to be GxN

+ x = model.matrix(formula, data)

+ if ("(Intercept)" %in% colnames(x))

+ x = x[, -which(colnames(x) %in% "(Intercept)")]

+ x = t(x)

+ featureNames = rownames(x)

+ mf = model.frame(formula, data)

+ resp = as.numeric(resp.fac <- factor(model.response(mf)))

8

+ finalFit=rda(x, resp, genelist=TRUE, alpha=alpha, delta=delta, ...)

+ list(finalFit=finalFit, x=x, resp.num=resp, resp.fac=resp.fac, featureNames=featureNames,

+ keptFeatures=featureNames[which(apply(finalFit$gene.list,3,function(x)x)==1)])

+ }

+ }

Now our real interface is defined. It runs the rdaCV wrapper to choose tuning
parameters, then passes these to rdaFixed, and defines an S3 object (for uniformity, to
be like most learning packages that we work with.) We also define a predict method for
that object. This has to deal with the fact that rda does not use factors.

> if (requireNamespace("rda", quietly=TRUE)) {

+ rdacvML = function(formula, data, ...) {

+ run1 = rdaCV(formula, data, ...)

+ perf.1se = cverrs(run1)$one.se.pos

+ del2keep = which.max(perf.1se[,2])

+ parms2keep = perf.1se[del2keep,]

+ alp = run1$alpha[parms2keep[1]]

+ del = run1$delta[parms2keep[2]]

+ fit = rdaFixed(formula, data, alpha=alp, delta=del, ...)

+ class(fit) = "rdacvML"

+ attr(fit, "xvalAns") = run1

+ fit

+ }

+

+ predict.rdacvML = function(object, newdata, ...) {

+ newd = data.matrix(newdata)

+ fnames = rownames(object$x)

+ newd = newd[, fnames]

+ inds = predict(object$finalFit, object$x, object$resp.num, xnew=t(newd))

+ factor(levels(object$resp.fac)[inds])

+ }

+

+ print.rdacvML = function(x, ...) {

+ cat("rdacvML S3 instance. components:\n")

+ print(names(x))

+ cat("---\n")

+ cat("elements of finalFit:\n")

+ print(names(x$finalFit))

+ cat("---\n")

+ cat("the rda.cv result is in the xvalAns attribute of the main object.\n")

+ }

+ }

9

Finally, the converter can take the standard form; look at rdacvI.

4 Additional features

The xvalSpec class allows us to specify types of cross-validation, and to control carefully
how partitions are formed. More details are provided in the MLprac2 2 vignette.

5 The MLearn approach to clustering and other forms

of unsupervised learning

A learner schema for a clustering method needs to specify clearly the feature distance
measure. We will experiment here. Our main requirements are

� ExpressionSets are the basic input objects

� The typical formula interface would be ~. but one can imagine cases where a factor
from phenoData is specified as a ’response’ to color items, and this will be allowed

� a clusteringOutput class will need to be defined to contain the results, and it will
propagate the result object from the native learning method.

10

	Introduction
	Some examples
	Making new interfaces
	A simple example: ada
	Dealing with gbm
	A harder example: rda

	Additional features
	The MLearn approach to clustering and other forms of unsupervised learning

