Overview of the PWMEFEnrich package

Robert Stojnic¢*

July 3, 2014
Contents
1 Introduction 1
1.1 Implemented algorithms Lo oL 2
1.2 5S4 class structure and accessorso 2
2 Use case 1: Finding enrichment motifs in a single sequence 2
3 Use case 2: Examining the binding sites 5
4 Use case 3: Finding enriched motifs in multiple sequences 9
5 Speeding up execution 12
5.1 Parallel execution e 12
5.2 Large memory backend L L L o 12
6 Customisation 12
6.1 Using a custom set of PWMs 12
6.2 Using a custom set of background sequences 13
7 Session information 14

1 Introduction

The main functionality of the package is Position Weight Matrix (PWM)! enrichment analysis
in a single sequence (e.g. enhancer of interest) or a set of sequences (e.g. set of ChIP-chip/seq
peaks). Note that this is not the same as de-novo motif finding which discovers novel motifs, nor
motif comparison which aligns motifs.

The package is build upon Biostrings and offers high-level functions to scan for DNA mo-
tif occurrences and compare them against a genomic background. There are multiple packages
with pre-compiled genomic backgrounds such as PWMEnrich.Dmelanogaster.background, PW-
MEnrich.Hsapiens.background and PWMEnrich.Mmusculus.background. In these packages the
genomic distribution is calculated for motifs from the MotifDb database. The PWMEnrich package
contains all the functions used to create these packages, so you can calculate your own background
distributions for your own set of motifs. In this vignette we will use the Drosophila package, but
the other background packages are used in the same way.

*e-mail: robert.stojnic@gmail.com, Cambridge Systems Biology Institute, University of Cambridge, UK
n this vignette we use "PWM?”, "DNA motif’” and "motif” interchangeably.

mailto:robert.stojnic@gmail.com

1.1 Implemented algorithms

PWMEnrich uses the PWM scanning algorithm implemented by the package Biostrings. This
package returns PWM scores at each position on one strand of a sequence. PWMEnrich extends
this with a higher-level functions which automatically scans both strands for multiple motifs and
sequences.

The main goal of the package is to assess the enrichment of motif hits in a sequence (or
group of sequences) compared to a genomic background. The traditional way of doing this is
to use a threshold for the PWM score and count the number of motif hits in the sequence(s) of
interest. Since this converts the sequence into a binary bound/not-bound string, the enrichment of
binding events can be assessed using a binomial formula. The PWMEnrich package implements this
algorithm, but by default uses a lognormal threshold-free approach (Stojnic and Adryan, 2014)
which is related to the score used in Clover (Frith et al., 2004).

In the lognormal threshold-free approach average affinity is calculated over the whole sequence
(or set of sequences) and compared to the average affinity of length-matched sequences from
the genomic background. This approach performs better or same as the best threshold approach
(Stojnic and Adryan, 2014), with the added benefit of not having to choose a threshold or compare
the results for multiple thresholds. We will use this threshold-free approach in all of our examples.
Please consult the reference manual on how to use the fixed-threshold algorithms.

1.2 S4 class structure and accessors

As the PWMEnrich package builds upon the Biostrings package it uses the classes from this
package to represent DNA sequences (DNAString and DNAStringSet). FASTA files can be loaded
using functions from Biostrings such as readDNAStringSet. The package introduces a new class
PWM to represent a PWM together with the frequency matrix and other parameters (background
nucleotide frequencies and pseudo-counts). All motif scoring is performed by the Biostrings pack-
age which is why the PWMEnrich package also returns log2 scores instead of more common log
base e scores.

The results of motif scanning are stored in objects of class MotifEnrichmentResults and
MotifEnrichmentReport. The package also introduces a number of classes that represent differ-
ent background distributions: PWMLognBackground, PWMCutoffBackground, PWMEmpiricalBack-
ground, PWMGEVBackground. In all cases, the classes are implemented with a list-like interface,
that is, individual pieces of information within the objects are accessibly using names(obj) and
obj$prop.

2 Use case 1: Finding enrichment motifs in a single se-
quence

One of the most well-known example of combinatorial control by transcription factors in Drosophila
is the even skipped (eve) stripe 2 enhancer. This well-studied enhancer has a number of annotated
binding sites for TFs Kr, vfi, bed, gt, hb and gt. We will use this enhancer as an example as we
already know its functional structure.

In order to predict which TFs are likely to functionally bind to the stripe 2 enhancer, we
will calculate motif enrichment for a set of 650 experimentally derived motifs from the MotifDb
database. We will do this by comparing the average affinity of each motif in the stripe 2 enhancers
to the affinity over all D. melanogaster promoters?. These background distributions are already
pre-calculated in the PWMEnrich.Dmelanogaster.background package which we will simply load
and use. See the last section of this vignette for using your own motifs and background sequences.

> library(PWMEnrich)
> library(PWMEnrich.Dmelanogaster.background)

2For more information see (Stojnic and Adryan, 2014)

vV + VvV VvV VvV

sequence

A DNAStringSet instance of length 1

width seq

[1] 484 GGTTACCCGGTACTGCATAACAA...AATGATGTCGAAGGGATTAGGGG

> # perform motif enrichment!

> res = motifEnrichment (sequence, PWMLogn.dm3.MotifDb.Dmel)

> report = sequenceReport (res, 1)

> report

load the pre-compiled lognormal background
data(PWMLogn.dm3.MotifDb.Dmel)
load the stripe2 sequences from a FASTA file for motif enrichment
sequence = readDNAStringSet (system.file(package="PWMEnrich",
dir="extdata", file="stripe2.fa"))

An object of class 'MotifEnrichmentReport':

rank target

1 1 oc
2 2 bcd
3 3 Ptx1
4 4 bcd
5 5 bcd
6 6 Gsc
7 7 Gsc
8 8 Ptx1
9 9 D
10 10 Gsc

650 650 vis

> # plot the top 30 most enriched motifs

id

Oc_SOLEXA_FBgn0004102
bed_FlyReg_FBgn0000166
Ptx1_SOLEXA_FBgn0020912
Bcd_Cell_FBgn0000166
Bcd_SOLEXA_FBgn0000166
Gsc_SOLEXA_FBgn0010323
Gsc_Cell_FBgn0010323

Ptx1
D_NAR_FBgn0000411
Gsc

> plot(report[1:30], fontsize=8)

raw.score
12.0647987758141
5.63411908732576
21.2538368223138
16.8158641518872
6.52627803922005
6.61030691892303
8.57034891276624
12.5061755821191
23.1334053023326
6.40551327159533

Vis_SOLEXA_FBgn0033748 0.0136301331722268

names

eve_stripe2

p-value

0.000376592081390237
0.000412409209523563
0.000649473662007989
0.000748084265069388

O O O O oo

.00163314432973656
.00164152477278935
.00202747679807863
.00230701519060613
.00267959880398655
.00281963918165213

0.999904947676631

Rank Target PWM Motif ID Raw score P-value
1 oc TAATC— Oc_SOLEXA_FBgn0004102 12.1 0.000377
2 bed _aAAC. bed_FlyReg_FBgn0000166 5.63 0.000412
3 Pix1 _TAATCc Ptx1_SOLEXA_FBgn0020912 21.3 0.000649
4 bed _ _TAATCC Bed_Cell_FBgn0000166 16.8 0.000748
5 bed _TAATC_ Bcd_SOLEXA_FBgn0000166 6.53 0.00163
6 Ge TAATc.. Gsc_SOLEXA_FBgn0010323 6.61 0.00164
7 Gsc __ TAATC- Gsc_Cell_FBgn0010323 8.57 0.00203
8 Ptx1 = | AATCC Ptx1 12,5 0.00231
9 D ~ ~ACAAT.c _ D_NAR_FBgn0000411 23.1 0.00268
10 Gsc TAATC- Gsc 6.41 0.00282
11 bed _xAACx bed_NAR_FBgn0000166 3.49 0.00314
12 oc TAATCC oc 7.05 0.00317
13 bed TAATCC bed 7.33 0.00333
14 cGi2768 + xTACCAA.._.. CG12768 SANGER_5_FBgn0037206 18.3 0.00461
15 oc ~TAATCCc Oc_Cell_FBgn0004102 6.97 0.00512
16 gt TT~cArcrTa o gt_FlyReg_FBgn0001150 8.35 0.00568
17 ca3407 . G TCAA_— CG3407_SANGER_2.5_FBgn0031573 8.66 0.00583
18 D _Ceal|TCT+ + D 20 0.00709
19 Her +CTCAA ——_ Her_SANGER_5_FBgn0030899 5.21 0.0144
20 ©Ga407 IO CG3407_SOLEXA_2.5_FBgn0031573 10.3 0.0155
21 lola-PA - T T .——_ lola-PA_SANGER_5_FBgn0005630 3.56 0.0195
22 kni ~.AA +2aG~_CA kni_SANGER_5_FBgn0001320 8.99 0.0201
23 HLHmgamma — - [C A A (SHLHmgamma_SANGER_5_2_FBgn0002735 4.28 0.0216
24 zen — TAAT<SA zen 4.25 0.0229
25 thPF A A=/ tkPF_SANGER_5_FBgn0003870 5.22 0.0238
26 eg ~AA TAGacCA.. eg_SANGER_5_FBgn0000560 7.66 0.0243
27 Kr — AAGGGT . Kr 4.34 0.0354
28 Kr Aa GO T - Kr_FlyReg_FBgn0001325 3.09 0.0371
29 AbdB . =ATAAA -~ Abd-B_FlyReg_FBgn0000015 3.9 0.0379
30 kni ~As 1AGA-CA . kni 5.07 0.041

The main function we used is motifEnrichment which took our sequence and calculated mo-
tif enrichment using the lognormal affinity background distribution (fitted on a set of 10031 D.
melanogaster 2kb promoters). This function returns a set of scores and P-values for our sequence.
We then used the sequenceReport function that create a ranked list of motifs, which we then
plot using plot. The first column is the rank, the second shows the target name, which is either
a gene name, an isoform name (such as ttk-PF), or a dimer name (such as tgo_sim not present
in this list). The next column in the plot is the PWM logo, and after that the motif ID. This ID
comes from the MotifDb package and can be used to look up further information about the motif
(such as the motif source). The next-to-last column is the raw affinity score, and the last column
is the P-value of motif enrichment.

As we can see, the top of the list is dominated by motifs similar to bed. By further examining
the list, we find we recovered the Kr, bcd and gt motifs, but not the vfl and hb motifs. These
two TFs (vfl and hb) have the smallest number of annotated binding sites out of the five TFs
in the stripe 2 enhancer. As a result, this affinity is not large enough to be picked up by motif
enrichment. However, the other three motifs were picked up. We find this to be the typical case
for many enhancers.

3 Use case 2: Examining the binding sites

We continue with our example of the eve stripe 2 enhancer from the previous section. We now
want to visualise the binding sites for Kr, bed and gt.

extract the 3 PWMs for the TFs we are interested in
ids = c("bcd", "gt_FlyReg FBgn0001150", "Kr")

sel.pwms = PWMLogn.dm3.MotifDb.Dmel$pwms [ids]

scan and get the raw scores

scores = motifScores(sequence, sel.pwms, raw.scores=TRUE)
raw scores for the first (and only) input sequence
dim(scores[[1]])

V VVVVVYyV

[1] 968 3

> head(scores[[1]])

bcd gt_FlyReg_FBgn0001150 Kr
[1,] 4.983791e-05 4.213929e-05 1.141957e-07
[2,] 5.555363e-04 4.275114e-04 1.162378e-03
[3,]1 3.373674e+00 2.326263e+00 1.480311e-02
[4,] 3.875803e-03 4.600757e-07 2.085725e-07
[5,]1 6.755119e-09 7.690586e-07 1.638103e-06
[6,] 1.723071e-07 7.229475e-08 4.625971e-07

> # score starting at position 1 of forward strand
scores[[1]][1, "bcd"]

v

bcd
4.983791e-05

> # score for the reverse complement of the motif, starting at the same position
scores[[1]][485, "bcd"]

v

bcd
.04329202

o

A\

plot
plotMotifScores(scores, cols=c('"green", "red", "blue"))

v

eve_stripe2 bed (11.12 max)
= gt FlyReg_FBgn0001150 (11.92 max)
® Kr(11.18 max)

484 bp

Here we used the motifScores function to obtain the raw scores at each position in the
sequence. The result of this function is a list of matrices, each element of the list corresponding
to an input sequence. In this case we had only one input sequence, and as a result we get a list of
length 1. The matrix of scores is a 968 x 3 matrix, where the rows correspond to the two strands
(2 x 484) and the columns correspond to motifs. It is important to remember that the scores are
in real and not log space. In other words, a conventional PWM log2 score of 3 is represented as
number 8 (23).

The scores for the two strands are concatenated one after the other. Therefore, row 1 has the
scores for the motif starting at position 1, and row 485 has the score at the same position, but
with the reverse complement of the motif (i.e. motif score on the reverse strand). Note that there
will be some NA values at the end of the sequence (e.g. position 484) because we do not support
partial motif matches.

Finally we use the plotMotifScores function to plot the log2 scores over the sequence. We
colour-code the motifs with green, red and blue. The motif hits are shown as rectangles with the
base being the length of the motif, and the hight being the log2 score of the motif hit. By default
we show all motif hits with log2 scores larger then 0. The forward strand hits are shown on the
top, and the reverse strand hits are shown on the bottom.

We next might be interested in finding the P-value for individual motif hits so we can get an
idea which sites are the most important. To do this we need to calculate the empirical PWM
score distribution for single sites. We did not provide these values precalculated because they
take up a very large amount of memory. To calculate it based on a set of promoter, we will need
the D. melanogaster genome sequence. Because the objects are so large, in this example we will
determine the P-value only for the hits of the bed motif, using only a small subset of promoters
(controlled by the parameter quick=TRUE).

library(BSgenome.Dmelanogaster.UCSC.dm3)

empirical distribution for the bcd motif

bcd.ecdf = motifEcdf (sel.pwms$bcd, Dmelanogaster, quick=TRUE)[[1]]
find the score that is equivalent to the P-value of 1le-3
threshold.1e3 = log2(quantile(bcd.ecdf, 1 - 1e-3))

threshold. 1e3

V V.V Vv VvyVv

99.9%
.973339

IS

replot only the bcd motif hits with the P-value cutoff of 1le-3 (0.001)
plotMotifScores(scores, cols="green", sel.motifs="bcd", cutoff=threshold.1e3)
P-value at each position

pvals = 1 - bed.ecdf (scores([[1]1][, "bcd"])

position where the P-value is smaller that le-3

which(pvals < 1e-3)

V V.V Vv Vv Vv

[1] 90 594 838 959

eve_stripe2 bed (11.12 max)

| |
| | 484 bp

Here we have used the motifEcdf function to create an empirical cumulative distribution
function (ECDF) for the bed motif score on Drosophila promoters. This function returns an
ecdf object which is part of base R. We can then use the quantile function to find which scores
correspond to a P-value of 0.001, or we can use it to convert all the scores into P-values (not
shown above). To plot the individual motif hits with P-values smaller than 0.001 we again use the
plotMotifScores function, but now we apply the threshold so that only those motif hits above
the threshold are drawn.

In the last line we find out the positions of those motif hits where the P-value is smaller then
le-3. Note that the values larger than the sequence length (484) indicate the reverse strand.
Therefore, we find the four strong motif hits at positions 90 on the forward strand and 110, 354
and 475 on the reverse strand.

Note that plotMotifScores can also plot multiple sequences on a single plot, and that the
cutoff parameter can contain a vector of values if we wish to apply different cutoff to different
motifs.

4 Use case 3: Finding enriched motifs in multiple sequences

So far we have only looked at motif enrichment in a single sequence, which was able to recover
some but not all of the truly functional motifs. The power of the motif enrichment approach can
be significantly boosted by performing it jointly on multiple sequences.

For this example we are going to use the top 20 ChIP-chip peaks for transcription factor
Tinman in Drosophila (Jin et al., 2013). We are going to scan these 20 ChIP-chip peaks with all
the 650 motifs and then compare their enrichment to genomic background. Running on the whole
set of peaks (i.e. thousands) is also possible but can take a long time (i.e. tens of minutes). The
speed can be improved by using multiple CPU cores (see next section).

library (PWMEnrich.Dmelanogaster.background)

load the pre-compiled lognormal background

data(PWMLogn.dm3.MotifDb.Dmel)

sequences = readDNAStringSet (system.file(package="PWMEnrich",
dir="extdata", file="tinman-early-top20.fa"))

res = motifEnrichment (sequences, PWMLogn.dm3.MotifDb.Dmel)

report = groupReport (res)

report

V V.V + VV\VyVy

An object of class 'MotifEnrichmentReport':

rank target id raw.score
1 1 vnd Vnd_SOLEXA_FBgn0003986 1.331642560015
2 2 tin tin 2.30913191829455
3 3 CG16778 CG16778_SANGER_5_FBgn0003715 2.44073158041219
4 4 vnd vnd 1.99855914798949
5 5.5 ovo ovo 1.04282788163688
6 5.5 prd prd 1.04282788163688
7 7 CG2052 CG2052_SANGER_2.5_FBgn0039905 8.93615013353702
8 8 tin tin_FlyReg_FBgn0004110 4.56378298273599
9 9 tin Tin_SOLEXA_FBgn0004110 1.22390594864211
10 10 tap_da tap_da_SANGER_5_FBgn0015550 2.28330178166671
650 650 Dref Dref_FlyReg_FBgn0015664 0.51934688781358
p.value top.motif.prop
1 2.99289122316941e-05 0.45
2 5.00378175587895e-05 0.4
3 0.00163387746548455 0.3
4 0.00166810428702504 0.3
5 0.0019029014551596 0.15
6 0.0019029014551596 0.15
7 0.00191384687276172 0.2
8 0.002270048621663 0.3
9 0.00237440092243837 0.2
10 0.0024715439677091 0.25
650 0.999967793443421 0

> plot(report[1:10], fontsize=8)

In top
motifs

1 vnd T AA Vnd_SOLEXA_FBgn0003986 1.33 2.99e-05 45 %
%é,CT, ,‘?,;,IA

2 tin TCAA T tin 2.31 5e-05 40 %
<G X

3 CG16778 CACA—I—A CG16778_SANGER_5_FBgn0003715 2.44 0.00163 30 %
VNEAL

4 vnd TCAA T vnd 2 0.00167 30 %
55 ovo AAC ovo 1.04 0.0019 15 %
=N W=

Rank Target PWM Motif ID Raw score P-value

55 prd prd 1.04 0.0019 15 %
Szl Ve
7 CG2052 CG2052_SANGER_2.5_FBgn0039905 8.94 0.00191 20 %
An o L
8 tin TCT CAA .|- tin_FlyReg_FBgn0004110 456 0.00227 30%
=S Ce=
9 tin A Tin_SOLEXA_FBgn0004110 1.22 0.00237 20 %
LN IA
10 tap_da T tap_da_SANGER_5_FBgn0015550 2.28 0.00247 25 %
AIAé é T

As in Use case 1, the main function is motifEnrichment which took our sequences and cal-
culated motif enrichment using the lognormal affinity background distribution (fitted on a set of
10031 D. melanogaster 2kb promoters). We then applied the groupReport function to calculate
the enrichment over the whole group of sequences. This produced a ranked list of motifs according
to the estimated P-values. Then we used plot to plot the top 10 enriched motifs.

The first and second motifs are very similar and correspond to the tinman, which is the tran-
scription factor for which the ChIP-chip experiment was performed. The first five columns are the
same as before (see Use case 1). The sixth column gives the estimate P-value. The last column
indicates in how many sequences is the motif among the 5% most enriched motifs. This column
helps to differentiate cases where the motif enrichment is strongly focused to a small subset of
sequences, versus being more widespread but weaker.

Ranking by P-value works well for fly PWMs. However, we found that for mouse and human
PWDMs applied to thousands of ChIP-chip/seq peak, ranking by the last column is more accurate:

> report.top = groupReport(res, by.top.motifs=TRUE)
> report.top

An object of class 'MotifEnrichmentReport':

10

rank target id raw.score

1 1 vnd Vnd_SOLEXA_FBgn0003986 1.331642560015

2 2 tin tin 2.30913191829455

3 4 CG16778 CG16778_SANGER_5_FBgn0003715 2.44073158041219

4 4 tin tin_FlyReg_FBgn0004110 4.56378298273599

5 4 vnd vnd 1.99855914798949

6 10 Aefl Aefl_SANGER_5_FBgn0005694 31.3169137912424

7 10 ken ken_SOLEXA_5_FBgn0011236 2.34041244967485

8 10 klu klu_SOLEXA_5_FBgn0013469 14.9381391375605

9 10 Imd 1md_SANGER_5_FBgn0039039 2.77441899611231

10 10 lola-PC lola-PC_SANGER_5_FBgn0005630 1.9130968547286

650 492 ttk ttk 0.418754284960579
p.value top.motif.prop

1 2.99289122316941e-05 0.45

2 5.00378175587895e-05 0.4

3 0.00163387746548455 0.3

4 0.002270048621663 0.3

5 0.00166810428702504 0.3

6 0.0863152680572984 0.25

7 0.0479090721465239 0.25

8 0.0492071601987718 0.25

9 0.173295035888357 0.25

10 0.0891502351674363 0.25

650 0.992543321683472 0

Anything with the top.motif.prop above 0.05 can be considered to be enriched. This way of
calculating enrichment should only be used when calculating motif enrichment with the whole set
of PWMs for an organism and in a group of at least tens of sequences.

The object returned by motifEnrichment has more information in it, as can be seen below:

> res

An object of class 'MotifEnrichmentResults':

* created with 'affinity' scoring function with 'logn' background correction

* on a set of 20 sequence(s) and 650 PWMs

Result sets for the group: $group.nobg, $group.bg, $group.norm

Result sets for individual sequences: $sequence.nobg, $sequence.bg, $sequence.norm
Report methods: groupReport(), sequenceReport()

> # raw scores
> res$sequence.nobg1:5, 1:2]

ab_SANGER_10_FBgn0259750 ab_SOLEXA_5_FBgn0259750

tinman-early_885
tinman-early_2150
tinman-early_280
tinman-early_1353
tinman-early_1624

> # P-values

> res$sequence.bgl1:5, 1:2]

tinman-early_885

0.32258956
0.13578745
0.01968489
0.10983606
2.31211300

0.4101435

11

0.05464342
0.89276819
0.02827202
0.26224401
1.35872007

ab_SANGER_10_FBgn0259750 ab_SOLEXA_5_FBgn0259750

0.7668959

tinman-early_2150 0.6710786 0.3027045

tinman-early_280 0.9072467 0.8664515
tinman-early_1353 0.6338600 0.4849721
tinman-early_1624 0.1043003 0.2067721

In these two matrices the rows correspond to the different input sequences and the columns
correspond to motifs. The first matrix (sequence.nobg) contains the raw affinity scores, while
the second (sequence.bg) contains the corresponding P-values. If you are using a fixed threshold
background (e.g. scanning with PWMPvalueCutoffle3.dm3.MotifDb.Dmel) the first matrix will
contain the number of motif hits, and the second the corresponding Z-scores.

5 Speeding up execution

5.1 DParallel execution

Motif scanning is the most time consuming operation. Because of this, the package has a support
for parallel motif scanning using the parallel core package. Note that parallel execution is currently
not supported on Windows. To turn on parallel scanning, simply register a number of cores
available to the package:

> registerCoresPWMEnrich (4)

After this command is executed, all further calls to PWMEnrich functions are going to be
run in parallel using 4 cores (if possible). To turn off parallel execution call the function with
parameter NULL:

> registerCoresPWMEnrich (NULL)

5.2 Large memory backend

Motif scanning can be further speeded up by using large amount of memory. If you have an access
to a machine with a lot of RAM, you can switch to the "big memory” backend:

> useBigMemoryPWMEnrich (TRUE)

From this point on, all motif scanning will be done using the optimised big memory backend.
The memory requirement depends on the number of sequences scanned, and might require tens of
GB of RAM. To turn it off:

> useBigMemoryPWMEnrich (FALSE)

6 Customisation

6.1 Using a custom set of PWMs

Background motif distributions for a custom set of PWMs can be easily calculated for all model
organisms. We will illustrate this by creating a new lognormal background for two de-novo motifs
in Drosophila. To load in the motifs the package provides functions to read standard JASPAR
and TRANSFAC formats.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> motifs.denovo = readMotifs(system.file(package="PWMEnrich",
+ dir="extdata", file="example.transfac"), remove.acc=TRUE)
> motifs.denovo

12

$tin_like_motif
(,11 (,21 (,3] [,4] (,5] (,6] C,7] [,8] [,9] [,10] [,11]1 [,12] [,13] [,14]

A 12 5 2 1 0 36 37 0 0 0 5 4 8 10
c 10 7T 24 0 36 0 0 1 0 0 6 19 8 4
G 10 13 6 0 0 1 0 36 0 36 22 7 6 8
T 5 12 5 36 1 0 0 0o 37 1 4 7 15 15

$gata_like_motif
(,11 [,21 [,31 [,4] [,5]1 [,6] [,7]1 [,8] [,9] [,10] [,11]

A 17 17 13 42 0 42 0 42 0 21 12
C 7T 12 19 0 0 0 0 0 42 5 16
G 6 6 7 0 42 0 0 0 0 8 5
T 12 7 3 0 0 0 42 0 0 8 9

> # convert count matrices into PWMs

> genomic.acgt = getBackgroundFrequencies (Dmelanogaster)

> pwms.denovo = PFMtoPWM(motifs.denovo, prior=genomic.acgt)

> bg.denovo = makeBackground(pwms.denovo, organism=Dmelanogaster, type="logn", quick=TRUE)
> # use new motifs for motif enrichment

> res.denovo = motifEnrichment (sequences[1:5], bg.denovo)

> groupReport (res.denovo)

An object of class 'MotifEnrichmentReport':

rank target id raw.score p.value top.motif.prop
1 1 tin_like_motif tin_like_motif 9.465309 6.841880e-07 0
2 2 gata_like_motif gata_like_motif 2.544327 1.397491e-03 0

We load in the count matrices and then convert them into PWMs using the genomic distribu-
tions of the A, C, G, T nucleotides. Next we use these PWMs to calculate the properties of the
affinity distribution on the set of D. melanogaster promoters. In this example we used quick=TRUE
for illustrative purposes. This fits the parameters quickly on a reduced set of 100 promoters. We
strongly discourage the users to use this parameter in their research, and instead only use it to
obtain rough estimates and for testing. The resulting object bg.denovo can be used same as before
to perform motif enrichment.

The background object bg.denovo contains the two PWMs and their background distribution
parameters. All of these can be accessed with the $ operator.

> bg.denovo

An object of class 'PWMLognBackground'

Background source: Drosophila melanogaster (dm3) 100 unique 2kb promoters
Fitted on a mean sequence length of 988 for a set of 2 PWMs

Lognormal parameters: $bg.mean, $bg.sd

PWMS: $pwms

> bg.denovo$bg.mean

tin_like_motif gata_like_motif
0.7536473 0.6818318

6.2 Using a custom set of background sequences

Low-level functions are available for constructing custom backgrounds. We start with the two de-
novo motifs from previous section and fit the background to first 20 D. melanogaster promoters.

13

library(BSgenome.Dmelanogaster.UCSC.dm3)

make a lognormal background for the two motifs using only first 20 promoters

bg.seq = Dmelanogaster$upstream2000[1:20]

the sequences are split into 100bp chunks and fitted

bg.custom = makePWMLognBackground(bg.seq, pwms.denovo, bg.len=100,
bg.source="20 promoters split into 100bp chunks")

bg.custom

vV + VvV Vv VYV

An object of class 'PWMLognBackground'

Background source: 20 promoters split into 100bp chunks
Fitted on a mean sequence length of 88 for a set of 2 PWMs
Lognormal parameters: $bg.mean, $bg.sd

PWMS: $pwms

The resulting bg. custom object can be used as before for motif enrichment with the motifEn-
richment function (as described before).

7 Session information

R version 3.1.0 (2014-04-10), x86_64-unknown-1linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils

e Other packages: BSgenome 1.32.0, BSgenome.Dmelanogaster. UCSC.dm3 1.3.1000,
BiocGenerics 0.10.0, Biostrings 2.32.0, GenomelnfoDb 1.0.2, GenomicRanges 1.16.3,
IRanges 1.22.9, PWMEnrich 3.6.1, PWMEnrich.Dmelanogaster.background 2.2.0,
XVector 0.4.0

e Loaded via a namespace (and not attached): Rsamtools 1.16.1, bitops 1.0-6, evd 2.3-0,
gdata 2.13.3, gtools 3.4.1, seqLogo 1.30.0, stats4 3.1.0, tools 3.1.0, zlibbioc 1.10.0

References

Frith, M. C., Fu, Y., Yu, L., Chen, J., Hansen, U., and Weng, Z. (2004). Detection of functional
DNA motifs via statistical over-representation. Nucl. Acids Res., 32(4):1372-1381.

Jin, H., Stojnic, R., Adryan, B., Ozdemir, A., Stathopoulos, A., and Frasch, M. (2013). Genome-
wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional
architectures. PLoS Genet, 9:¢1003195.

Stojnic, R. and Adryan, B. (2014). Affinity based DNA motif enrichment analysis with
R/Bioconductor package PWMEnrich. in preparation.

14

	Introduction
	Implemented algorithms
	S4 class structure and accessors

	Use case 1: Finding enrichment motifs in a single sequence
	Use case 2: Examining the binding sites
	Use case 3: Finding enriched motifs in multiple sequences
	Speeding up execution
	Parallel execution
	Large memory backend

	Customisation
	Using a custom set of PWMs
	Using a custom set of background sequences

	Session information

