SWIG-3.0 Documentation

SWIG-3.0 Documentation

Table of Contents

SWIG-3.0 Documentation

e Sections
o SWIG Core Documentation
o Language Module Documentation
o Developer Documentation

1 Preface

1.1 Introduction

1.2 SWIG Versions

1.3 SWIG License

1.4 SWIG resources

1.5 Prerequisites

1.6 Organization of this manual

1.7 How to avoid reading the manual

1.8 Backwards compatibility
1.9 Release notes

1.10 Credits
1.11 Bug reports
1.12 Installation
o 1.12.1 Windows installation
1.12.2 Unix installation
1.12.3 Macintosh OS X installation
1.12.4 Testing
1.12.5 Examples

o O o0 o

2 Introduction

e 2.1 What is SWIG?

e 2.2 Why use SWIG?

e 2.3 A SWIG example
o 2.3.1 SWIG interface file
o 2.3.2 The swig command

o 2.3.3 Building a Perl5 module
o 2.3.4 Building a Python module

o 2.3.5 Shortcuts
2.4 Supported C/C++ language features
2.5 Non-intrusive interface building
2.6 Incorporating SWIG into a build system

2.7 Hands off code generation
2.8 SWIG and freedom

3 Getting started on Windows

e 3.1 Installation on Windows
o 3.1.1 Windows Executable
e 3.2 SWIG Windows Examples

o 3.2.1 Instructions for using the Examples with Visual Studio
32.1.1C#

3.2.1.2 Java
3.2.1.3 Perl
3.2.1.4 Python
3.2.1.7 Ruby
o 3.2.2 Instructions for using the Examples with other compilers
e 3.3 SWIG on Cygwin and MinGW
o 3.3.1 Building swig.exe on Windows
= 3.3.1.1 Building swig.exe using MinGW and MSYS
= 3.3.1.2 Building swig.exe using Cygwin
= 3.3.1.3 Building swig.exe alternatives
o 3.3.2 Running the examples on Windows using Cygwin
e 3.4 Microsoft extensions and other Windows quirks

4 Scripting Languages
e 4.1 The two language view of the world

SWIG-3.0 Documentation

e 4.2 How does a scripting language talk to C?
4.2.1 Wrapper functions

4.2.2 Variable linking
4.2.3 Constants

4.2.4 Structures and classes
o 4.2.5 Proxy classes
e 4.3 Building scripting language extensions
o 4.3.1 Shared libraries and dynamic loading
o 4.3.2 Linking with shared libraries
o 4.3.3 Static linking

o O o0 o

5 SWIG Basics

e 5.1 Running SWIG
o 5.1.1 Input format
5.1.2 SWIG Output
5.1.3 Comments
5.1.4 C Preprocessor
5.1.5 SWIG Directives
5.1.6 Parser Limitations
e 5.2 Wrapping Simple C Declarations
5.2.1 Basic Type Handling
5.2.2 Global Variables
5.2.3 Constants
5.2.4 A brief word about const
o 5.2.5 A cautionary tale of char *
e 5.3 Pointers and complex objects
o 5.3.1 Simple pointers
o 5.3.2 Run time pointer type checking
o 5.3.3 Derived types, structs, and classes
o 5.3.4 Undefined datatypes
o 5.3.5 Typedef
e 5.4 Other Practicalities
o 5.4.1 Passing structures by value
5.4.2 Return by value
5.4.3 Linking to structure variables
5.4.4 Linking to char *
5.4.5 Arrays
5.4.6 Creating read-only variables
5.4.7 Renaming and ignoring declarations
= 5.4.7.1 Simple renaming of specific identifiers
= 5.4.7.2 Advanced renaming support
= 5.4.7.3 Limiting global renaming rules
= 5.4.7.4 Ignoring everything then wrapping a few selected symbols
o 5.4.8 Default/optional arguments
o 5.4.9 Pointers to functions and callbacks
e 5.5 Structures and unions
o 5.5.1 Typedef and structures
5.5.2 Character strings and structures
5.5.3 Array members
5.5.4 Structure data members
5.5.5 C constructors and destructors
5.5.6 Adding member functions to C structures
5.5.7 Nested structures
5.5.8 Other things to note about structure wrapping
e 5.6 Code Insertion
o 5.6.1 The output of SWIG
o 5.6.2 Code insertion blocks
o 5.6.3 Inlined code blocks
o 5.6.4 Initialization blocks
e 5.7 An Interface Building Strategy
o 5.7.1 Preparing a C program for SWIG
o 5.7.2 The SWIG interface file
o 5.7.3 Why use separate interface files?
o 5.7.4 Getting the right header files
o 5.7.5 What to do with main()

o 0 0 o o

0 0 0 0 0o o o O o0 o

0 0 0 0 0 0 ©°

6 SWIG and C++

6.1 Comments on C++ Wrapping
6.2 Approach
6.3 Supported C++ features
6.4 Command line options and compilation
6.5 Proxy classes

o 6.5.1 Construction of proxy classes

o 6.5.2 Resource management in proxies

o 6.5.3 Language specific details
e 6.6 Simple C++ wrapping

o 6.6.1 Constructors and destructors

6.6.2 Default constructors, copy constructors and implicit destructors
6.6.3 When constructor wrappers aren't created
6.6.4 Copy constructors
6.6.5 Member functions

6.6.6 Static members

o 0 0 o o

SWIG-3.0 Documentation

o 6.6.7 Member data
6.7 Default arguments
6.8 Protection
6.9 Enums and constants
6.10 Friends
6.11 References and pointers
6.12 Pass and return by value
6.13 Inheritance
6.14 A brief discussion of multiple inheritance, pointers, and type checking
6.15 Wrapping Overloaded Functions and Methods
o 6.15.1 Dispatch function generation
o 6.15.2 Ambiguity in Overloading
o 6.15.3 Ambiguity resolution and renaming
o 6.15.4 Comments on overloading
6.16 Wrapping overloaded operators
6.17 Class extension
6.18 Templates
6.19 Namespaces
o 6.19.1 The nspace feature for namespaces
6.20 Renaming templated types in namespaces
6.21 Exception specifications
6.22 Exception handling with %catches
6.23 Pointers to Members
6.24 Smart pointers and operator->()
6.25 C++ reference counted objects - ref/unref feature

6.26 Using declarations and inheritance
6.27 Nested classes

6.28 A brief rant about const-correctness
6.29 Where to go for more information

7 SWIG and C++11

e 7.1 Introduction
e 7.2 Core language changes
7.2.1 Rvalue reference and move semantics
7.2.2 Generalized constant expressions
7.2.3 Extern template
7.2.4 Initializer lists
7.2.5 Uniform initialization
7.2.6 Type inference
7.2.7 Range-based for-loop
7.2.8 Lambda functions and expressions
7.2.9 Alternate function syntax
7.2.10 Object construction improvement
7.2.11 Explicit overrides and final
7.2.12 Null pointer constant
7.2.13 Strongly typed enumerations
7.2.14 Double angle brackets
7.2.15 Explicit conversion operators
7.2.16 Type alias and alias templates
7.2.17 Unrestricted unions
7.2.18 Variadic templates
7.2.19 New string literals
7.2.20 User-defined literals
7.2.21 Thread-local storage
7.2.22 Explicitly defaulted functions and deleted functions
7.2.23 Type long long int
7.2.24 Static assertions
7.2.25 Allow sizeof to work on members of classes without an explicit object
7.2.26 Exception specifications and noexcept
7.2.27 Control and query object alignment
o 7.2.28 Attributes
e 7.3 Standard library changes
o 7.3.1 Threading facilities
7.3.2 Tuple types
7.3.3 Hash tables
7.3.4 Regular expressions
7.3.5 General-purpose smart pointers
7.3.6 Extensible random number facility
7.3.7 Wrapper reference
7.3.8 Polymorphic wrappers for function objects
7.3.9 Type traits for metaprogramming
7.3.10 Uniform method for computing return type of function objects

0O 0O 0O 0O0O0O0OOOOO OO O O OO OO O0OO0O O O0OO0O O0O 0O O

0 0O 0 0O 0O 0O 0 0O

8 Preprocessing

8.1 File inclusion
8.2 File imports
8.3 Conditional Compilation

8.4 Macro Expansion
8.5 SWIG Macros

8.6 C99 and GNU Extensions
8.7 Preprocessing and delimiters
o 8.7.1 Preprocessing and %{ ... %} & " ... " delimiters

SWIG-3.0 Documentation

o 8.7.2 Preprocessing and { ... } delimiters
e 8.8 Preprocessor and Typemaps
e 8.9 Viewing preprocessor output
e 8.10 The #error and #warning directives

9 SWIG librar

e 9.1 The %include directive and library search path
e 9.2 C Arrays and Pointers

o 9.2.1 cpointer.i

o 9.2.2 carrays.i

o 9.2.3 cmalloc.i

o 9.2.4 cdata.i
e 9.3 C String Handling
o 9.3.1 Default string handling
o 9.3.2 Passing binary data
o 9.3.3 Using %newobject to release memory
o 9.3.4 cstring.i
e 9.4 STL/C++ Library
o 9.4.1 std::string
o 9.4.2 std::vector
o 9.4.3 STL exceptions
o 9.4.4 shared ptr smart pointer
o 9.4.5 auto_ptr smart pointer
e 9.5 Utility Libraries
o 9.5.1 exception.i

10 Argument Handling

e 10.1 The typemaps.i library

10.1.1 Introduction

10.1.2 Input parameters

10.1.3 Output parameters
10.1.4 Input/Output parameters
10.1.5 Using different names

e 10.2 Applying constraints to input values

o 10.2.1 Simple constraint example
o 10.2.2 Constraint methods

o 10.2.3 Applying constraints to new datatypes

o 0 0 o o

11 Typemaps

e 11.1 Introduction
o 11.1.1 Type conversion
11.1.2 Typemaps
11.1.3 Pattern matching
11.1.4 Reusing typemaps
11.1.5 What can be done with typemaps?
11.1.6 What can't be done with typemaps?
11.1.7 Similarities to Aspect Oriented Programming
o 11.1.8 The rest of this chapter
e 11.2 Typemap specifications
o 11.2.1 Defining a typemap
o 11.2.2 Typemap scope
o 11.2.3 Copying a typemap
o 11.2.4 Deleting a typemap
o 11.2.5 Placement of typemaps
e 11.3 Pattern matching rules
o 11.3.1 Basic matching rules
o 11.3.2 Typedef reductions matching
o 11.3.3 Default typemap matching rules
o 11.3.4 Multi-arguments typemaps
o 11.3.5 Matching rules compared to C++ templates
o 11.3.6 Debuggin emap pattern matchin,
e 11.4 Code generation rules
o 11.4.1 Scope
o 11.4.2 Declaring new local variables
o 11.4.3 Special variables
o 11.4.4 Special variable macros
= 11.4.4.1 $descriptor(type)
= 11.4.4.2 $typemap(method, typepattern)
o 11.4.5 Special variables and typemap attributes
o 11.4.6 Special variables combined with special variable macros
e 11.5 Common typemap methods
o 11.5.1"in" typemap
11.5.2 "typecheck" typemap
11.5.3 "out" typemap
11.5.4 "arginit" typemap
11.5.5 "default" typemap
11.5.6 "check" typemap
11.5.7 "argout" typemap
11.5.8 "freearg" typemap
11.5.9 "newfree" typemap
11.5.10 "ret" typemap

0 0 0 0 0o o

0 0O 0 0O 0O 0O 0 0O

SWIG-3.0 Documentation

11.5.11 "memberin" typemap
11.5.12 "varin" typemap
11.5.13 "varout" typemap
o 11.5.14 "throws" typemap

e 11.6 Some typemap examples

o 11.6.1 Typemaps for arrays

o 11.6.2 Implementing constraints with typemaps
11.7 Typemaps for multiple target languages
11.8 Optimal code generation when returning by value
11.9 Multi-argument typemaps
11.10 Typemap warnings

11.11 Typemap fragments
o 11.11.1 Fragment type specialization

o 11.11.2 Fragments and automatic typemap specialization

e 11.12 The run-time type checker

o 11.12.1 Implementation

o 11.12.2 Usage
11.13 Typemaps and overloading
11.14 More about %apply and %clear
11.15 Passing data between typemaps
11.16 C++ "this" pointer
11.17 Where to go for more information?

o O o

12 Customization Features

e 12.1 Exception handling with %exception

o 12.1.1 Handling exceptions in C code
12.1.2 Exception handling with longjmp()
12.1.3 Handling C++ exceptions
12.1.4 Exception handlers for variables
12.1.5 Defining different exception handlers
12.1.6 Special variables for %exception
o 12.1.7 Using The SWIG exception library

e 12.2 Object ownership and %newobject
e 12.3 Features and the %feature directive

o 12.3.1 Feature attributes

12.3.2 Feature flags

12.3.3 Clearing features

12.3.4 Features and default arguments
12.3.5 Feature example

o 0 0 o o

o O o0 o

13 Contracts

13.1 The %contract directive
13.2 %contract and classes

13.3 Constant aggregation and %aggregate check
13.4 Notes

14 Variable Length Arguments

14.1 Introduction

14.2 The Problem

14.3 Default varargs support

14.4 Argument replacement using %varargs
14.5 Varargs and typemaps

14.6 Varargs wrapping with libffi

14.7 Wrapping of va_list

14.8 C++ Issues

14.9 Discussion

15 Warning Messages

15.1 Introduction

15.2 Warning message suppression

15.3 Enabling extra warnings

15.4 Issuing a warning message

15.5 Symbolic symbols

15.6 Commentary

15.7 Warnings as errors

15.8 Message output format

15.9 Warning number reference
o 15.9.1 Deprecated features (100-199)
o 15.9.2 Preprocessor (200-299)
o 15.9.3 C/C++ Parser (300-399)
o 15.9.4 Types and typemaps (400-499)
o 15.9.5 Code generation (500-599)
o 15.9.6 Language module specific (700-899)
o 15.9.7 User defined (900-999)

e 15.10 History

16 Working with Modules

e 16.1 Modules Introduction
e 16.2 Basics
e 16.3 The SWIG runtime code

SWIG-3.0 Documentation

16.4 External access to the runtime
16.5 A word of caution about static libraries
16.6 References

16.7 Reducing the wrapper file size

17 Using SWIG with ccache - ccache-swig(1) manpage

17.1 NAME

17.2 SYNOPSIS

17.3 DESCRIPTION

17.4 OPTIONS SUMMARY

17.5 OPTIONS

17.6 INSTALLATION

17.7 EXTRA OPTIONS

17.8 ENVIRONMENT VARIABLES
17.9 CACHE SIZE MANAGEMENT
17.10 CACHE COMPRESSION

17.11 HOW IT WORKS

17.12 USING CCACHE WITH DISTCC
17.13 SHARING A CACHE

17.14 HISTORY

17.15 DIFFERENCES FROM COMPILERCACHE
17.16 CREDITS

17.17 AUTHOR

18 SWIG and Allegro Common Lisp

e 18.1 Basics
o 18.1.1 Running SWIG
o 18.1.2 Command Line Options
o 18.1.3 Inserting user code into generated files
e 18.2 Wrapping Overview
o 18.2.1 Function Wrapping
18.2.2 Foreign Wrappers
18.2.3 FFI Wrappers
18.2.4 Non-overloaded Defuns
18.2.5 Overloaded Defuns
18.2.6 What about constant and variable access?
o 18.2.7 Object Wrapping
e 18.3 Wrapping Details
o 18.3.1 Namespaces
18.3.2 Constants
18.3.3 Variables
18.3.4 Enumerations
18.3.5 Arrays
18.3.6 Classes and Structs and Unions (oh my!)

= 18.3.6.1 CLOS wrapping of
= 18.3.6.2 CLOS Inheritance

= 18.3.6.3 Member fields and functions
= 18.3.6.4 Why not directly access C++ classes using foreign types?
o 18.3.7 Templates
= 18.3.7.1 Generating wrapper code for templates
= 18.3.7.2 Implicit Template instantiation
o 18.3.8 Typedef, Templates. and Synonym Types
= [8.3.8.1 Choosing a prima e
18.3.9 Function overloading/Parameter defaulting
18.3.10 Operator wrapping and Operator overloading
18.3.11 Varargs
18.3.12 C++ Exceptions
o 18.3.13 Pass by value, pass by reference
e 18.4 Typemaps
o 18.4.1 Code Generation in the C++ Wrapper
= 18.4.1.1 IN Typemap
= 18.4.1.2 OUT Typemap
= 18.4.1.3 CTYPE Typemap
o 18.4.2 Code generation in Lisp wrappers
m 18.4.2.1 LIN Typemap

18.4.2.2 LOUT Typemap
18.4.2.3 FFITYPE Typemap

18.4.2.4 LISPTYPE Typemap
18.4.2.5 LISPCLASS Typemap
o 18.4.3 Modifying SWIG behavior using typemaps
e 18.5 Identifier Converter functions
o 18.5.1 Creating symbols in the lisp environment
o 18.5.2 Existing identifier-converter functions
= 18.5.2.1 identifier-convert-null
= 18.5.2.2 identifier-convert-lispify
= 18.5.2.3 Default identifier to symbol conversions
o 18.5.3 Defining your own identifier-converter
o 18.5.4 Instructing SWIG to use a particular identifier-converter

o 0 0 o o

o 0 0 o o

o O o0 o

19 SWIG and Android

e 19.1 Overview

SWIG-3.0 Documentation

e 19.2 Android examples
o 19.2.1 Examples introduction
o 19.2.2 Simple C example
o 19.2.3 C++ class example

o 19.2.4 Other examples
e 19.3 C++STL

20 SWIG and C#

e 20.1 Introduction
o 20.1.1 SWIG 2 Compatibility
o 20.1.2 Additional command line options
20.2 Differences to the Java module
20.3 Void pointers
20.4 C# Arrays
o 20.4.1 The SWIG C arrays library
o 20.4.2 Managed arrays using P/Invoke default array marshalling
o 20.4.3 Managed arrays using pinning
20.5 C# Exceptions
o 20.5.1 C# exception example using "check" typemap
o 20.5.2 C# exception example using %exception
o 20.5.3 C# exception example using exception specifications
o 20.5.4 Custom C# ApplicationException example
20.6 C# Directors
o 20.6.1 Directors example
o 20.6.2 Directors implementation
o 20.6.3 Director caveats
20.7 Multiple modules
20.8 C# Typemap examples
o 20.8.1 Memory management when returning references to member variables
20.8.2 Memory management for objects passed to the C++ layer
20.8.3 Date marshalling using the csin typemap and associated attributes
20.8.4 A date example demonstrating marshalling of C# properties
20.8.5 Date example demonstrating the 'pre' and 'post’ typemap attributes for directors
20.8.6 Turning wrapped classes into partial classes
20.8.7 Extending proxy classes with additional C# code
20.8.8 Underlying type for enums

0 0 0 0 0 0 ©°

21 SWIG and Chicken

e 21.1 Preliminaries
o 21.1.1 Running SWIG in C mode
o 21.1.2 Running SWIG in C++ mode
21.2 Code Generation
21.2.1 Naming Conventions
21.2.2 Modules
21.2.3 Constants and Variables
21.2.4 Functions
21.2.5 Exceptions
21.3 TinyCLOS
e 21.4 Linkage
o 21.4.1 Static binary or shared library linked at compile time
o 21.4.2 Building chicken extension libraries
o 21.4.3 Linking multiple SWIG modules with TinyCLOS
21.5 Typemaps
21.6 Pointers
o 21.6.1 Garbage collection
e 21.7 Unsupported features and known problems
o 21.7.1 TinyCLOS problems with Chicken version <= 1.92

L] L]
o 0 0 o o

22 SWIG and D

22.1 Introduction
22.2 Command line invocation
22.3 Typemaps
o 22.3.1 C# <->D name comparison
22.3.2 ctype. imtype. dtype
22.3.3 in, out, directorin, directorout
22.3.4 din, dout, ddirectorin, ddirectorout
22.3.5 typecheck typemaps
22.3.6 Code injection typemaps
o 22.3.7 Special variable macros
22.4 D and %feature
22.5 Pragmas

22.6 D Exceptions
22.7 D Directors

22.8 Other features
o 22.8.1 Extended namespace support (nspace)
o 22.8.2 Native pointer support
o 22.8.3 Operator overloading
o 22.8.4 Running the test-suite
22.9 D Typemap examples
22.10 Work in progress and planned features

e o o o o
o 0 0 o o

23 SWIG and Go

SWIG-3.0 Documentation

23.1 Overview
23.2 Examples
e 23.3 Running SWIG with Go
o 23.3.1 Go-specific Commandline Options
o 23.3.2 Generated Wrapper Files
e 23.4 A tour of basic C/C++ wrapping
o 23.4.1 Go Package Name
23.4.2 Go Names
23.4.3 Go Constants
23.4.4 Go Enumerations
23.4.5 Go Classes
= 23.4.5.1 Go Class Memory Management
= 23.4.5.2 Go Class Inheritance
o 23.4.6 Go Templates
o 23.4.7 Go Director Classes
= 23.4.7.1 Example C++ code
23.4.7.2 Enable director feature
23.4.7.3 Constructor and destructor
23.4.7.4 Override virtual methods
23.4.7.5 Call base methods
23.4.7.6 Subclass via embedding
23.4.7.7 Memory management with runtime.SetFinalizer
= 23.4.7.8 Complete FooBarGo example class
23.4.8 Default Go primitive type mappings
23.4.9 Output arguments
23.4.10 Adding additional go code
23.4.11 Go typemaps

o O o0 o

o O o0 o

24 SWIG and Guile

24.1 Supported Guile Versions
24.2 Meaning of "Module"
24.3 Old GH Guile API
24.4 Linkage
o 24.4.1 Simple Linkage
o 24.4.2 Passive Linkage
o 24.4.3 Native Guile Module Linkage
o 24.4.4 Old Auto-Loading Guile Module Linkage
o 24.4.5 Hobbit4D Linkage
e 24.5 Underscore Folding
24.6 Typemaps
e 24.7 Representation of pointers as smobs
o 24.7.1 Smobs
o 24.7.2 Garbage Collection
24.8 Native Guile pointers
24.9 Exception Handling
24.10 Procedure documentation
24.11 Procedures with setters
24.12 GOOPS Proxy Classes
o 24.12.1 Naming Issues
o 24.12.2 Linking

25 SWIG and Java

e 25.1 Overview
e 25.2 Preliminaries
o 25.2.1 Running SWIG

25.2.2 Additional Commandline Options
25.2.3 Getting the right header files
25.2.4 Compiling a dynamic module
25.2.5 Using your module
25.2.6 Dynamic linking problems
25.2.7 Compilation problems and compiling with C++
25.2.8 Building on Windows

= 25.2.8.1 Running SWIG from Visual Studio

= 25.2.8.2 Using NMAKE
e 25.3 A tour of basic C/C++ wrapping

o 25.3.1 Modules, packages and generated Java classes

25.3.2 Functions
25.3.3 Global variables
25.3.4 Constants

m 25.3.5.1 Anonymous enums

= 25.3.5.2 Typesafe enums

m 25.3.5.3 Proper Java enums

= 25.3.5.4 Type unsafe enums

= 25.3.5.5 Simple enums
25.3.6 Pointers

25.3.7 Structures

25.3.8 C++ classes

25.3.9 C++ inheritance

25.3.10 Pointers, references, arrays and pass by value

= 25.3.10.1 Null pointers
o 25.3.11 C++ overloaded functions

o O o0 o 0 0 0 0 0 0 ©°

o 0 0 o o

SWIG-3.0 Documentation

25.3.12 C++ default arguments
25.3.13 C++ namespaces
25.3.14 C++ templates
25.3.15 C++ Smart Pointers
m 25.3.15.1 The shared ptr Smart Pointer
= 25.3.15.2 Generic Smart Pointers
e 25.4 Further details on the generated Java classes
o 25.4.1 The intermediary JNI class
= 25.4.1.1 The intermediary JNI class pragmas
o 25.4.2 The Java module class
= 25.4.2.1 The Java module class pragmas
o 25.4.3 Java proxy classes
m 25.4.3.1 Memory management
25.4.3.2 Inheritance
25.4.3.3 Proxy classes and garbage collection
25.4.3.4 The premature garbage collection prevention parameter for proxy class marshalling
25.4.3.5 Single threaded applications and thread safety
o 25.4.4 Type wrapper classes
o 25.4.5 Enum classes
m 25.4.5.1 Typesafe enum classes
= 25.4.5.2 Proper Java enum classes
= 25.4.5.3 Type unsafe enum classes
o 25.4.6 Interfaces
e 25.5 Cross language polymorphism using directors

o 25.5.1 Enabling directors
25.5.2 Director classes

25.5.3 Overhead and code bloat
25.5.4 Simple directors example
25.5.5 Director threading issues
25.5.6 Director performance tuning
o 25.5.7 Java exceptions from directors
e 25.6 Accessing protected members
e 25.7 Common customization features
o 25.7.1 C/C++ helper functions
o 25.7.2 Class extension with %extend
o 25.7.3 Class extension with %proxycode
o 25.7.4 Exception handling with %exception and %javaexception
o 25.7.5 Method access with %javamethodmodifiers
e 25.8 Tips and techniques
o 25.8.1 Input and output parameters using primitive pointers and references
o 25.8.2 Simple pointers
o 25.8.3 Wrapping C arrays with Java arrays
o 25.8.4 Unbounded C Arrays
o 25.8.5 Binary data vs Strings
o 25.8.6 Overriding new and delete to allocate from Java heap
e 25.9 Java typemaps
o 25.9.1 Default primitive type mappings
25.9.2 Default typemaps for non-primitive types
25.9.3 Sixty four bit JVMs
25.9.4 What is a typemap?
25.9.5 Typemaps for mapping C/C++ types to Java types
25.9.6 Java typemap attributes
25.9.7 Java special variables
25.9.8 Typemaps for both C and C++ compilation
25.9.9 Java code typemaps
25.9.10 Director specific typemaps
e 25.10 Typemap Examples
25.10.1 Simpler Java enums for enums without initializers
25.10.2 Handling C++ exception specifications as Java exceptions
25.10.3 NaN Exception - exception handling for a particular type
25.10.4 Converting Java String arrays to char **
25.10.5 Expanding a Java object to multiple arguments
25.10.6 Using typemaps to return arguments
25.10.7 Adding Java downcasts to polymorphic return types
25.10.8 Adding an equals method to the Java classes
25.10.9 Void pointers and a common Java base class
25.10.10 Struct pointer to pointer
25.10.11 Memory management when returning references to member variables
25.10.12 Memory management for objects passed to the C++ layer
o 25.10.13 Date marshalling using the javain typemap and associated attributes
e 25.11 Living with Java Directors
e 25.12 Odds and ends
o 25.12.1 JavaDoc comments
o 25.12.2 Functional interface without proxy classes
o 25.12.3 Using your own JNI functions
o 25.12.4 Performance concerns and hints
o 25.12.5 Debugging
e 25.13 Java Examples

o O o0 o
" RN

o 0 0 o o

0 0O 0 0O 0O 0O 0 0O

0 0O 0O 0O OO0 OO O 0 O

26 SWIG and Javascript

e 26.1 Overview
e 26.2 Preliminaries
o 26.2.1 Running SWIG

o 26.2.2 Running Tests and Examples
o 26.2.3 Known Issues

e 26.3 Integration
o 26.3.1 Creating node.js Extensions

= 26.3.1.1 Troubleshooting
o 26.3.2 Embedded Webkit

= 26.3.2.1 Mac OS X
m 26.3.2.2 GTK
o 26.3.3 Creating Applications with node-webkit
e 26.4 Examples
o 26.4.1 Simple
o 26.4.2 Class
e 26.5 Implementation
o 26.5.1 Source Code
26.5.2 Code Templates
26.5.3 Emitter

26.5.4 Emitter states
26.5.5 Handling Exceptions in JavascriptCore

o
o
o
o

27 SWIG and Common Lisp

e 27.1 Allegro Common Lisp
e 27.2 Common Foreign Function Interface(CFFI)
o 27.2.1 Additional Commandline Options
o 27.2.2 Generating CFFI bindings
o 27.2.3 Generating CFFI bindings for C++ code
o 27.2.4 Inserting user code into generated files
e 27.3 CLISP
o 27.3.1 Additional Commandline Options
o 27.3.2 Details on CLISP bindings
e 27.4 UFFI

28 SWIG and Lua

e 28.1 Preliminaries
e 28.2 Running SWIG
o 28.2.1 Additional command line options
o 28.2.2 Compiling and Linking and Interpreter
o 28.2.3 Compiling a dynamic module
o 28.2.4 Using your module

e 28.3 A tour of basic C/C++ wrapping
o 28.3.1 Modules

28.3.2 Functions
28.3.3 Global variables
28.3.4 Constants and enums

o O o

SWIG-3.0 Documentation

= 28.3.4.1 Constants/enums and classes/structures

28.3.5 Pointers

28.3.6 Structures

28.3.7 C++ classes

28.3.8 C++ inheritance

28.3.9 Pointers, references, values, and arrays
28.3.10 C++ overloaded functions

28.3.11 C++ operators

28.3.12 Class extension with %extend
28.3.13 Using %newobject to release memory
28.3.14 C++ templates

28.3.15 C++ Smart Pointers

28.3.16 C++ Exceptions

28.3.17 Namespaces

= 28.3.17.1 Compatibility Note
m 28.3.17.2 Names

= 28.3.17.3 Inheritance

0O 0O 0O 0O OO0 OO O 0 OO

e 28.4 Typemaps
o 28.4.1 What is a typemap?
o 28.4.2 Using typemaps
o 28.4.3 Typemaps and arrays
o 28.4.4 Typemaps and pointer-pointer functions
e 28.5 Writing typemaps
o 28.5.1 Typemaps you can write
o 28.5.2 SWIG's Lua-C API
e 28.6 Customization of your Bindings
o 28.6.1 Writing your own custom wrappers
o 28.6.2 Adding additional Lua code
e 28.7 Details on the Lua binding
o 28.7.1 Binding global data into the module.
o 28.7.2 Userdata and Metatables

o 28.7.3 Memory management
29 SWIG and Modula-3

e 29.1 Overview
o 29.1.1 Motivation

e 29.2 Conception
o 29.2.1 Interfaces to C libraries

o

SWIG-3.0 Documentation

29.2.2 Interfaces to C++ libraries

29.3 Preliminaries

o
o

29.3.1 Compilers
29.3.2 Additional Commandline Options

29.4 Modula-3 typemaps

o

o O o0 o

o

29.4.1 Inputs and outputs

29.4.2 Subranges, Enumerations, Sets
29.4.3 Objects

29.4.4 Imports

29.4.5 Exceptions

29.4.6 Example

29.5 More hints to the generator

o
o

29.5.1 Features
29.5.2 Pragmas

29.6 Remarks

30 SWIG and MzScheme/Racket

e 30.1 Creating native structures

e 30.2 Simple example
e 30.3 External documentation

31 SWIG and Ocaml

e 31.1 Preliminaries

o

o O o0 o

31.1.1 Running SWIG

31.1.2 Compiling the code

31.1.3 The camlp4 module

31.1.4 Using your module

31.1.5 Compilation problems and compiling with C++

e 31.2 The low-level Ocaml/C interface

o
o

o

o

o

o

31.2.1 The generated module
31.2.2 Enums
= 31.2.2.1 Enum typing in Ocaml
31.2.3 Arrays
= 31.2.3.1 Simple types of bounded arrays
= 31.2.3.2 Complex and unbounded arrays
= 31.2.3.3 Using an object
= 31.2.3.4 Example typemap for a function taking float * and int
31.2.4 C++ Classes
= 31.2.4.1 STL vector and string Example
= 31.2.4.2 C++ Class Example
= 31.2.4.3 Compiling the example
= 31.2.4.4 Sample Session
31.2.5 Director Classes

= 31.2.5.1 Director Introduction
31.2.5.2 Overriding Methods in Ocaml
31.2.5.3 Director Usage Example
31.2.5.4 Creating director objects
31.2.5.5 Typemaps for directors, directorin, directorout. directorargout
31.2.5.6 typemap
31.2.5.7 directorout typemap
= 31.2.5.8 directorargout typemap
31.2.6 Exceptions

32 SWIG and Octave

e 32.1 Preliminaries
e 32.2 Running SWIG

o
o
o

32.2.1 Command-line options
32.2.2 Compiling a dynamic module
32.2.3 Using your module

e 32.3 A tour of basic C/C++ wrapping

o

0O 0O 0 0O 0O 0O 0O 0O 0 0 o

o 0 0 o o

33 SWIG and Perl5

32.3.1 Modules

32.3.3 Global variables

32.3.4 Constants and enums

32.3.5 Pointers

32.3.6 Structures and C++ classes

32.3.7 C++ inheritance

32.3.8 C++ overloaded functions

32.3.9 C++ operators

32.3.10 Class extension with %extend

32.3.11 C++ templates

32.3.12 C++ Smart Pointers
= 32.3.12.1 The shared ptr Smart Pointer
= 32.3.12.2 Generic Smart Pointers

32.3.13 Directors (calling Octave from C++ code)

32.3.14 Threads

32.3.15 Memory management

32.3.16 STL support

32.3.17 Matrix typemaps

33.1 Overview
33.2 Preliminaries

SWIG-3.0 Documentation

o 33.2.1 Getting the right header files

o 0 0 o o

33.2.2 Compiling a dynamic module

33.2.3 Building a dynamic module with MakeMaker
33.2.4 Building a static version of Perl

33.2.5 Using the module

33.2.6 Compilation problems and compiling with C++

o 33.2.7 Compiling for 64-bit platforms

33.3 Building Perl Extensions under Windows

o 33.3.1 Running SWIG from Developer Studio
o 33.3.2 Using other compilers

0 0O 0 0O 0O 0O 0 0O

33.4 The low-level interface

33.4.1 Functions

33.4.2 Global variables

33.4.3 Constants

33.4.4 Pointers

33.4.5 Structures

33.4.6 C++ classes

33.4.7 C++ classes and type-checking
33.4.8 C++ overloaded functions

33.4.9 Operators

o 33.4.10 Modules and packages

33.5 Input and output parameters
33.6 Exception handling
33.7 Remapping datatypes with typemaps

o 33.7.1 A simple typemap example
o 33.7.2 Perl5 typemaps
o 33.7.3 Typemap variables
o 33.7.4 Useful functions
e 33.8 Typemap Examples
o 33.8.1 Converting a Perl5 array to a char **
o 33.8.2 Return values
o 33.8.3 Returning values from arguments
o 33.8.4 Accessing array structure members
o 33.8.5 Turning Perl references into C pointers
o 33.8.6 Pointer handling

33.9 Proxy classes

o 33.9.1 Preliminaries

o 33.9.2 Structure and class wrappers
o 33.9.3 Object Ownership

o 33.9.4 Nested Objects

o 33.9.5 Proxy Functions

o 33.9.6 Inheritance

o 33.9.7 Modifying the proxy methods

33.10 Adding additional Perl code
33.11 Cross language polymorphism

o 33.11.1 Enabling directors
33.11.2 Director classes

33.11.3 Ownership and object destruction

33.11.5 Overhead and code bloat

o
o
o 33.11.4 Exception unrolling
o
o

33.11.6 Typemaps

34 SWIG and PHP

e 34.1 Generating PHP Extensions
o 34.1.1 Building a loadable extension
o 34.1.2 Using PHP Extensions

e 34.2 Basic PHP interface

o 34.2.1 Constants

o 0 0 o o

34.2.2 Global Variables

34.2.3 Functions

34.2.4 Overloading

34.2.5 Pointers and References
34.2.6 Structures and C++ classes

34.2.6.1 Using -noproxy

34.2.6.2 Constructors and Destructors
34.2.6.3 Static Member Variables
34.2.6.4 Static Member Functions

34.2.6.5 Specifying Implemented Interfaces

o 34.2.7 PHP Pragmas, Startup and Shutdown code
e 34.3 Cross language polymorphism
o 34.3.1 Enabling directors

0 0 0 0 0o o

35 SWIG and Pike

e 35.1 Preliminaries

34.3.2 Director classes

34.3.3 Ownership and object destruction
34.3.4 Exception unrolling
34.3.5 Overhead and code bloat

34.3.6 Typemaps
34.3.7 Miscellaneous

12

o
o
o

SWIG-3.0 Documentation

35.1.1 Running SWIG
35.1.2 Getting the right header files
35.1.3 Using your module

e 35.2 Basic C/C++ Mapping

o

o
o
o
o
o

35.2.1 Modules

35.2.2 Functions

35.2.3 Global variables

35.2.4 Constants and enumerated types
35.2.5 Constructors and Destructors
35.2.6 Static Members

36 SWIG and Python

e 36.1 Overview
e 36.2 Preliminaries

o

0 0 0 0 0o o

o

36.2.1 Running SWIG

36.2.2 Using distutils

36.2.3 Hand compiling a dynamic module

36.2.4 Static linking

36.2.5 Using your module

36.2.6 Compilation of C++ extensions

36.2.7 Compiling for 64-bit platforms

36.2.8 Building Python Extensions under Windows

e 36.3 A tour of basic C/C++ wrapping

o

0O 0O 0O 0O OO0 OO O 0 OO

o

36.3.1 Modules

36.3.2 Functions

36.3.3 Global variables

36.3.4 Constants and enums

36.3.5 Pointers

36.3.6 Structures

36.3.7 C++ classes

36.3.8 C++ inheritance

36.3.9 Pointers, references, values, and arrays

36.3.10 C++ overloaded functions

36.3.11 C++ operators

36.3.12 C++ namespaces

36.3.13 C++ templates

36.3.14 C++ Smart Pointers
= 36.3.14.1 The shared ptr Smart Pointer
= 36.3.14.2 Generic Smart Pointers

36.3.15 C++ reference counted objects

e 36.4 Further details on the Python class interface

o
o

o
o

36.4.1 Proxy classes
36.4.2 Built-in Types
= 36.4.2.1 Limitations
= 36.4.2.2 Operator overloads and slots -- use them!
36.4.3 Memory management
36.4.4 Python 2.2 and classic classes

e 36.5 Cross language polymorphism

o

o 0 0 o o

o

36.5.1 Enabling directors

36.5.2 Director classes

36.5.3 Ownership and object destruction
36.5.4 Exception unrolling

36.5.5 Overhead and code bloat

36.5.6 Typemaps
36.5.7 Miscellaneous

e 36.6 Common customization features

o
o
o
o

36.6.1 C/C++ helper functions
36.6.2 Adding additional Python code
36.6.3 Class extension with %extend

36.6.4 Exception handling with %exception

e 36.7 Tips and techniques

o
o
o
o
o

36.7.1 Input and output parameters
36.7.2 Simple pointers

36.7.3 Unbounded C Arrays
36.7.4 String handling

36.7.5 Default arguments

e 36.8 Typemaps

o
o
o
o

36.8.1 What is a typemap?
36.8.2 Python typemaps

36.8.3 Typemap variables
36.8.4 Useful Python Functions

e 36.9 Typemap Examples

o

o O o0 o

o

36.9.1 Converting Python list to a char **

36.9.2 Expanding a Python object into multiple arguments
36.9.3 Using typemaps to return arguments

36.9.4 Mapping Python tuples into small arrays

36.9.5 Mapping sequences to C arrays

36.9.6 Pointer handling

e 36.10 Docstring Features

o
o

36.10.1 Module docstring

36.10.2 %feature("autodoc")
= 36.10.2.1 %feature("autodoc", "0")
= 36.10.2.2 %feature("autodoc", "1")

13

SWIG-3.0 Documentation

= 36.10.2.3 %feature("autodoc", "2")
= 36.10.2.4 %feature("autodoc", "3")
m 36.10.2.5 %feature("autodoc", "docstring™)
o 36.10.3 %feature("docstring")
e 36.11 Python Packages
o 36.11.1 Setting the Python package
o 36.11.2 Absolute and relative imports
o 36.11.3 Enforcing absolute import semantics
o 36.11.4 Importing from __init _.py
o 36.11.5 Implicit Namespace Packages
o 36.11.6 Searching for the wrapper module
= 36.11.6.1 Both modules in the same package
= 36.11.6.2 Split modules
= 36.11.6.3 Both modules are global
= 36.11.6.4 Statically linked C modules
e 36.12 Python 3 Support
o 36.12.1 Function annotation
o 36.12.2 Buffer interface
o 36.12.3 Abstract base classes
o 36.12.4 Byte string output conversion
o 36.12.5 Python 2 Unicode

37 SWIG and R

37.1 Bugs

37.2 Using R and SWIG

37.3 Precompiling large R files
37.4 General policy

37.5 Language conventions
37.6 C++ classes

37.7 Enumerations

38 SWIG and Ruby

e 38.1 Preliminaries

o 38.1.1 Running SWIG
38.1.2 Getting the right header files
38.1.3 Compiling a dynamic module
38.1.4 Using your module
38.1.5 Static linking

o 38.1.6 Compilation of C++ extensions
e 38.2 Building Ruby Extensions under Windows 95/NT

o 38.2.1 Running SWIG from Developer Studio
e 38.3 The Ruby-to-C/C++ Mapping
38.3.1 Modules
38.3.2 Functions
38.3.3 Variable Linking
38.3.4 Constants
38.3.5 Pointers
38.3.6 Structures
38.3.7 C++ classes
38.3.8 C++ Inheritance
38.3.9 C++ Overloaded Functions
38.3.10 C++ Operators
38.3.11 C++ namespaces
38.3.12 C++ templates
38.3.13 C++ Standard Template Library (STL
38.3.14 C++ STL Functors
38.3.15 C++ STL Iterators
38.3.16 C++ Smart Pointers

= 38.3.16.1 The shared ptr Smart Pointer
= 38.3.16.2 Generic Smart Pointers

o 38.3.17 Cross-Language Polymorphism

= 38.3.17.1 Exception Unrolling

o O o0 o

0O 0O 0O 0O0O0O0OOOO O OO 0 0 o

e 38.4 Naming
o 38.4.1 Defining Aliases
o 38.4.2 Predicate Methods
o 38.4.3 Bang Methods
o 38.4.4 Getters and Setters
e 38.5 Input and output parameters
e 38.6 Exception handling
o 38.6.1 Using the %exception directive
o 38.6.2 Handling Ruby Blocks
o 38.6.3 Raising exceptions
o 38.6.4 Exception classes
e 38.7 Typemaps
o 38.7.1 What is a typemap?
38.7.2 Typemap scope
38.7.3 Copying a typemap
38.7.4 Deleting a typemap
38.7.5 Placement of typemaps
38.7.6 Ruby typemaps
= 38.7.6.1 "in" typema
= 38.7.6.2 "typecheck" typema

o 0 0 o o

SWIG-3.0 Documentation

38.7.6.3 "out" typemap
38.7.6.4 "arginit" typemap
38.7.6.5 "default" typemap
38.7.6.6 "check" typemap
38.7.6.7 "argout" typemap
38.7.6.8 "freearg" typemap
38.7.6.9 "newfree" typemap
38.7.6.10 "memberin" typemap
38.7.6.11 "varin" typemap
38.7.6.12 "varout" typemap
38.7.6.13 "throws" typemap
38.7.6.14 directorin typemap
38.7.6.15 directorout typemap
38.7.6.16 directorargout typemap
38.7.6.17 ret typemap
38.7.6.18 globalin typemap
o 38.7.7 Typemap variables
o 38.7.8 Useful Functions
= 38.7.8.1 C Datatypes to Ruby Objects
38.7.8.2 Ruby Objects to C Datatypes
38.7.8.3 Macros for VALUE
38.7.8.4 Exceptions
38.7.8.5 Iterators
38.7.9 Typemap Examples
38.7.10 Converting a Ruby array to a char **
38.7.11 Collecting arguments in a hash
38.7.12 Pointer handling
= 38.7.12.1 Ruby Datatype Wrapping
o 38.7.13 Example: STL Vector to Ruby Array
e 38.8 Docstring Features
o 38.8.1 Module docstring
o 38.8.2 %feature("autodoc")
= 38.8.2.1 %feature("autodoc", "0")
= 38.8.2.2 %feature("autodoc", "1")
= 38.8.2.3 %feature("autodoc", "2")
= 38.8.2.4 %feature("autodoc", "3")
= 38.8.2.5 %feature("autodoc", "docstring")
o 38.8.3 %feature("docstring")
e 38.9 Advanced Topics
o 38.9.1 Operator overloading
o 38.9.2 Creating Multi-Module Packages
o 38.9.3 Specifying Mixin Modules
e 38.10 Memory Management
o 38.10.1 Mark and Sweep Garbage Collector
38.10.2 Object Ownership

38.10.3 Object Tracking
38.10.4 Mark Functions

38.10.5 Free Functions
38.10.6 Embedded Ruby and the C++ Stack

o O o0 o

o 0 0 o o

39 SWIG and Scilab

e 39.1 Preliminaries

e 39.2 Running SWIG

39.2.1 Generating the module
39.2.2 Building the module

39.2.3 Loading the module

39.2.4 Using the module

o 39.2.5 Scilab command line options

e 39.3 A basic tour of C/C++ wrapping
o 39.3.1 Overview

o 39.3.2 Identifiers
o 39.3.3 Functions
= 39.3.3.1 Argument passing
= 39.3.3.2 Multiple output arguments
o 39.3.4 Global variables
o 39.3.5 Constants and enumerations
= 39.3.5.1 Constants
= 39.3.5.2 Enumerations
o 39.3.6 Pointers
= 39.3.6.1 Utility functions

= 39.3.6.2 Null pointers:
39.3.7 Structures

39.3.8 C++ classes

39.3.9 C++ inheritance

39.3.10 C++ overloading

39.3.11 Pointers, references, values, and arrays
39.3.12 C++ templates

39.3.13 C++ operators

39.3.14 C++ namespaces

39.3.15 C++ exceptions

o 39.3.16 C++ STL

e 39.4 Type mappings and libraries
o 39.4.1 Default primitive type mappings

o O o0 o

0 0O 0 0O 0O 0O 0 0O

15

o 39.4.2 Arrays
o 39.4.3 Pointer-to-pointers
o 39.4.4 Matrices
o 39.4.5STL
39.5 Module initialization
39.6 Building modes
o 39.6.1 No-builder mode
o 39.6.2 Builder mode
39.7 Generated scripts
o 39.7.1 Builder script

o 39.7.2 Loader script
39.8 Other resources

40 SWIG and Tcl

40.1 Preliminaries
o 40.1.1 Getting the right header files

40.1.2 Compiling a dynamic module

40.1.3 Static linking

40.1.4 Using your module

40.1.5 Compilation of C++ extensions

40.1.6 Compiling for 64-bit platforms

40.1.7 Setting a package prefix
o 40.1.8 Using namespaces

40.2 Building Tcl/Tk Extensions under Windows 95/NT
o 40.2.1 Running SWIG from Developer Studio
o 40.2.2 Using NMAKE

40.3 A tour of basic C/C++ wrapping
o 40.3.1 Modules

40.3.2 Functions

40.3.3 Global variables

40.3.4 Constants and enums
40.3.5 Pointers

40.3.6 Structures

40.3.7 C++ classes

40.3.8 C++ inheritance

40.3.9 Pointers. references, values, and arrays
40.3.10 C++ overloaded functions
40.3.11 C++ operators

40.3.12 C++ namespaces

40.3.13 C++ templates
40.3.14 C++ Smart Pointers

40.4 Further details on the Tcl class interface
o 40.4.1 Proxy classes
o 40.4.2 Memory management
40.5 Input and output parameters
40.6 Exception handling
40.7 Typemaps
o 40.7.1 What is a typemap?
40.7.2 Tcl typemaps
40.7.3 Typemap variables
40.7.4 Converting a Tcl list to a char **
40.7.5 Returning values in arguments
40.7.6 Useful functions
40.7.7 Standard typemaps
o 40.7.8 Pointer handling
40.8 Turning a SWIG module into a Tcl Package.
40.9 Building new kinds of Tcl interfaces (in Tcl)

o 40.9.1 Proxy classes
40.10 Tcl/Tk Stubs

0O 0O 0O 0O OO0 OO O 0 OO 0 0 0 0 0o o

0 0 0 0 0o o

41 Extending SWIG to support new languages

41.1 Introduction

41.2 Prerequisites
41.3 The Big Picture
41.4 Execution Model
o 41.4.1 Preprocessing
41.4.2 Parsing
41.4.3 Parse Trees
41.4.4 Attribute namespaces

41.4.5 Symbol Tables
41.4.6 The %feature directive

41.4.7 Code Generation
o 41.4.8 SWIG and XML
41.5 Primitive Data Structures
o 41.5.1 Strings
41.5.2 Hashes
41.5.3 Lists
41.5.4 Common operations
41.5.5 Tterating over Lists and Hashes
o 41.5.61/0
41.6 Navigating and manipulating parse trees
41.7 Working with attributes

0 0 0 0 0o o

o
o
o
o

SWIG-3.0 Documentation

16

SWIG-3.0 Documentation

41.8 Type system
o 41.8.1 String encoding of types
41.8.2 Type construction
41.8.3 Type tests
41.8.4 Typedef and inheritance
41.8.5 Lvalues
o 41.8.6 Output functions
41.9 Parameters
41.10 Writing a Language Module
o 41.10.1 Execution model
41.10.2 Starting out
41.10.3 Command line options
41.10.4 Configuration and preprocessing
41.10.5 Entry point to code generation
41.10.6 Module I/O and wrapper skeleton
41.10.7 Low-level code generators
41.10.8 Configuration files
41.10.9 Runtime support
41.10.10 Standard library files
41.10.11 User examples
41.10.12 Test driven development and the test-suite
= 41.10.12.1 Running the test-suite
o 41.10.13 Documentation
o 41.10.14 Prerequisites for adding a new language module to the SWIG distribution
o 41.10.15 Coding style guidelines
41.11 Debugging Options
41.12 Guide to parse tree nodes
41.13 Further Development Information

o
o
o
o

0O 0O 0 0O 0O 0O 0O 0O 0 0 o

SWIG-3.0 Documentation

Last update : SWIG-3.0.12 (27 Jan 2017)

Sections

SWIG Core Documentation

Preface

Introduction

Getting started on Windows
Scripting

SWIG Basics (Read this!)
SWIG and C++

SWIG and C++11

The SWIG preprocessor
The SWIG library
Argument handling
Typemaps

Customization features
Contracts

Variable length arguments
Warning messages
Working with Modules
Using SWIG with ccache

Language Module Documentation

Sections

Allegro Common Lisp support
Android support

C# support

Chicken support

D support

Go support

Guile support

Java support
Javascript support
Common Lisp support
Lua support

Modula3 support
MzScheme/Racket support
Ocaml support

Octave support

Perl5 support

PHP support

Pike support

Python support

R support

Ruby support

Scilab support

Tcl support

17

SWIG-3.0 Documentation

Developer Documentation

e Extending SWIG

1 Preface

Introduction

SWIG Versions

SWIG License

SWIG resources

Prerequisites

Organization of this manual
How to avoid reading the manual

Backwards compatibility
Release notes

Credits
Bug reports
Installation
o Windows installation
Unix installation
Macintosh OS X installation
Testing
Examples

® © 06 0 0 0 0 0 0 0 o o

o
o
o
o

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to C and C++ programs. Originally
developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Los Alamos National Laboratory for building user interfaces to
simulation codes running on the Connection Machine 5 supercomputer. In this environment, scientists needed to work with huge amounts of simulation data,
complex hardware, and a constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for solving
these types of problems. SWIG simplifies development by largely automating the task of scripting language integration--allowing developers and users to focus
on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used in a wide variety of applications-
-in fact almost anything where C/C++ programming is involved.

1.2 SWIG Versions

In the late 1990's, the most stable version of SWIG was release 1.1p5. Versions 1.3.x were officially development versions and these were released over a period
of 10 years starting from the year 2000. The final version in the 1.3.x series was 1.3.40, but in truth the 1.3.x series had been stable for many years. An official
stable version was released along with the decision to make SWIG license changes and this gave rise to version 2.0.0 in 2010.

1.3 SWIG License

The LICENSE file shipped with SWIG in the top level directory contains the SWIG license. For further insight into the license including the license of SWIG's
output code, please visit the SWIG legal page - http:/www.swig.org/legal.html.

The license was clarified in version 2.0.0 so that the code that SWIG generated could be distributed under license terms of the user's choice/requirements and at
the same time the SWIG source was placed under the GNU General Public License version 3.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and implementation tricks.

You can also subscribe to the swig-user mailing list by visiting the page

http://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and future work.

Git and Subversion access to the latest version of SWIG is also available. More information about this can be obtained at:

SWIG Bleeding Edge

1.1 Introduction

18

http://www.swig.org/legal.html
http://www.swig.org
http://www.swig.org/mail.html
http://www.swig.org/svn.html

SWIG-3.0 Documentation

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as Tcl, Python, and Perl. A
detailed knowledge of these scripting languages is not required although some familiarity won't hurt. No prior experience with building C extensions to these
languages is required---after all, this is what SWIG does automatically. However, you should be reasonably familiar with the use of compilers, linkers, and
makefiles since making scripting language extensions is somewhat more complicated than writing a normal C program.

Over time SWIG releases have become significantly more capable in their C++ handling--especially support for advanced features like namespaces, overloaded
operators, and templates. Whenever possible, this manual tries to cover the technicalities of this interface. However, this isn't meant to be a tutorial on C++
programming. For many of the gory details, you will almost certainly want to consult a good C++ reference. If you don't program in C++, you may just want to
skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining chapters are devoted to specific SWIG
language modules and are self contained. Thus, if you are using SWIG to build Python interfaces, you can probably skip to that chapter and find almost
everything you need to know.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction" which contains a few simple examples. These examples contain about 95% of everything you need to
know to use SWIG. After that, simply use the language-specific chapters as a reference. The SWIG distribution also comes with a large directory of examples that
illustrate different topics.

1.8 Backwards compatibility

If you are a previous user of SWIG, don't expect SWIG to provide complete backwards compatibility. Although the developers strive to the utmost to keep
backwards compatibility, this isn't always possible as the primary goal over time is to make SWIG better---a process that would simply be impossible if the
developers are constantly bogged down with backwards compatibility issues. Potential incompatibilities are clearly marked in the detailed release notes.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION preprocessor symbol which
holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as 0x010311 (corresponding to SWIG-1.3.11). This can be used in an
interface file to define different typemaps, take advantage of different features etc:

#if SWIG VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined SWIG_VERSION since SWIG-1.3.11.

1.9 Release notes

The CHANGES.current, CHANGES and RELEASENOTES files shipped with SWIG in the top level directory contain, respectively, detailed release notes for
the current version, detailed release notes for previous releases and summary release notes from SWIG-1.3.22 onwards.

1.10 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people working in their spare time. If you have benefitted from using
SWIG, please consider Donating to SWIG to keep development going. There have been a large varied number of people who have made contributions at all levels
over time. Contributors are mentioned either in the COPYRIGHT file or CHANGES files shipped with SWIG or in submitted bugs.

1.11 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may introduce bugs. To report a bug, either
send mail to the SWIG developer list at the swig-devel mailing list or report a bug at the SWIG bug tracker. In your report, be as specific as possible, including (if
applicable), error messages, tracebacks (if a core dump occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG
generated wrapper code. We can only fix bugs if we know about them.

1.12 Installation

1.12.1 Windows installation
Please see the dedicated Windows chapter for instructions on installing SWIG on Windows and running the examples. The Windows distribution is called
swigwin and includes a prebuilt SWIG executable, swig.exe, included in the top level directory. Otherwise it is exactly the same as the main SWIG distribution.
There is no need to download anything else.

1.12.2 Unix installation

These installation instructions are for using the distributed tarball, for example, swig-3.0.8.tar.gz. If you wish to build and install from source on Github,
extra steps are required. Please see the Bleeding Edge page on the SWIG website.

You must use GNU make to build and install SWIG.

1.5 Prerequisites

19

http://www.swig.org/donate.html
http://www.swig.org/mail.html
http://www.swig.org/bugs.html
http://swig.org/svn.html
http://www.gnu.org/software/make/

SWIG-3.0 Documentation

PCRE needs to be installed on your system to build SWIG, in particular pcre-config must be available. If you have PCRE headers and libraries but not pcre-config
itself or, alternatively, wish to override the compiler or linker flags returned by pcre-config, you may set PCRE LIBS and PCRE_CFLAGS variables to be used
instead. And if you don't have PCRE at all, the configure script will provide instructions for obtaining it.

To build and install SWIG, simply type the following:

$./configure
$ make
S make install

By default SWIG installs itself in /usr/local. If you need to install SWIG in a different location or in your home directory, use the ——prefix option to
./configure. For example:

$./configure --prefix=/home/yourname/projects
$ make
S make install

Note: the directory given to ——prefix must be an absolute pathname. Do not use the ~ shell-escape to refer to your home directory. SWIG won't work properly
if you do this.

The INSTALL file shipped in the top level directory details more about using configure. Also try

$./configure --help.

The configure script will attempt to locate various packages on your machine including Tcl, Perl5, Python and all the other target languages that SWIG supports.
Don't panic if you get 'not found' messages -- SWIG does not need these packages to compile or run. The configure script is actually looking for these packages
so that you can try out the SWIG examples contained in the 'Examples’ directory without having to hack Makefiles. Note that the --without-xxx options,
where xxx is a target language, have minimal effect. All they do is reduce the amount of testing done with 'make check'. The SWIG executable and library files
installed cannot currently be configured with a subset of target languages.

SWIG used to include a set of runtime libraries for some languages for working with multiple modules. These are no longer built during the installation stage.
However, users can build them just like any wrapper module as described in the Modules chapter. The CHANGES file shipped with SWIG in the top level
directory also lists some examples which build the runtime library.

Note:

e If you checked the code out via Git, you will have to run . /autogen. sh before . /configure. In addition, a full build of SWIG requires a number of
packages to be installed. Full instructions at SWIG bleeding edge.

1.12.3 Macintosh OS X installation

SWIG is known to work on various flavors of OS X. Follow the Unix installation instructions above. However, as of this writing, there is still great deal of
inconsistency with how shared libaries are handled by various scripting languages on OS X.

Users of OS X should be aware that Darwin handles shared libraries and linking in a radically different way than most Unix systems. In order to test SWIG and
run the examples, SWIG configures itself to use flat namespaces and to allow undefined symbols (-flat namespace -undefined suppress). This
mostly closely follows the Unix model and makes it more likely that the SWIG examples will work with whatever installation of software you might have.
However, this is generally not the recommended technique for building larger extension modules. Instead, you should utilize Darwin's two-level namespaces.
Some details about this can be found here Understanding Two-Level Namespaces.

Needless to say, you might have to experiment a bit to get things working at first.
1.12.4 Testing

If you want to test SWIG after building it, a check can be performed on Unix operating systems. Type the following:

$ make -k check

This step can be performed either before or after installation. The check requires at least one of the target languages to be installed. If it fails, it may mean that you
have an uninstalled language module or that the file 'Examples/Makefile' has been incorrectly configured. It may also fail due to compiler issues such as a broken
C++ compiler. Even if the check fails, there is a pretty good chance SWIG still works correctly --- you will just have to mess around with one of the examples and
some makefiles to get it to work. Some tests may also fail due to missing dependency packages, eg PCRE or Boost, but this will require careful analysis of the
configure output done during configuration.

The test suite executed by the check is designed to stress-test many parts of the implementation including obscure corner cases. If some of these tests fail or
generate warning messages, there is no reason for alarm --- the test may be related to some new SWIG feature or a difficult bug that we're trying to resolve.
Chances are that SWIG will work just fine for you. Note that if you have more than one CPU/core, then you can use parallel make to speed up the check as it does
take quite some time to run, for example:

$ make -j2 -k check

Also, SWIG's support for C++ is sufficiently advanced that certain tests may fail on older C++ compilers (for instance if your compiler does not support member
templates). These errors are harmless if you don't intend to use these features in your own programs.

1.5 Prerequisites

20

http://www.pcre.org/
http://www.swig.org/svn.html
https://developer.apple.com/library/mac/documentation/Porting/Conceptual/PortingUnix/compiling/compiling.html#//apple_ref/doc/uid/TP40002850-BCIHJBBF

SWIG-3.0 Documentation

Note: The test-suite currently contains over 500 tests. If you have many different target languages installed and a slow machine, it might take more than an hour to
run the test-suite.

1.12.5 Examples

The Examples directory contains a variety of examples of using SWIG and it has some browsable documentation. Simply point your browser to the file
"Example/index.html".

The Examples directory also includes Visual C++ project 6 (.dsp) files for building some of the examples on Windows. Later versions of Visual Studio will
convert these old style project files into a current solution file.

2 Introduction

o What is SWIG?

Why use SWIG?

o A SWIG example

SWIG interface file

The swig command

Building a Perl5S module

Building a Python module
o Shortcuts

Supported C/C++ language features

Non-intrusive interface building

Incorporating SWIG into a build system

Hands off code generation
SWIG and freedom

L]

o
o
o
o

e o o o o

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a nutshell, SWIG is a compiler that
takes C/C++ declarations and creates the wrappers needed to access those declarations from other languages including Perl, Python, Tcl, Ruby, Guile, and Java.
SWIG normally requires no modifications to existing code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG
include:

Building interpreted interfaces to existing C programs.

Rapid prototyping and application development.

Interactive debugging.

Reengineering or refactoring of legacy software into scripting language components.
Making a graphical user interface (using Tk for example).

Testing of C libraries and programs (using scripts).

Building high performance C modules for scripting languages.

Making C programming more enjoyable (or tolerable depending on your point of view).
Impressing your friends.

Obtaining vast sums of research funding (although obviously not applicable to the author).

® © &6 o 0 0 0 o o o

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software without having to get a degree in
software engineering. Because of this, the use of SWIG tends to be somewhat informal and ad-hoc (e.g., SWIG does not require users to provide formal interface
specifications as you would find in a dedicated IDL compiler). Although this style of development isn't appropriate for every project, it is particularly well suited
to software development in the small; especially the research and development work that is commonly found in scientific and engineering projects. However,
nowadays SWIG is known to be used in many large open source and commercial projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other programming languages. However, why
would anyone want to do that? To answer that question, it is useful to list a few strengths of C/C++ programming:

e Excellent support for writing programming libraries.

e High performance (number crunching, data processing, graphics, etc.).
e Systems programming and systems integration.

e Large user community and software base.

Next, let's list a few problems with C/C++ programming

e Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other libraries).
e Testing is time consuming (the compile/debug cycle).

e Not easy to reconfigure or customize without recompilation.

e Modularization can be tricky.

e Security concerns (buffer overflows for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming languages for different tasks.
For instance, writing a graphical user interface may be significantly easier in a scripting language like Python or Tcl (consider the reasons why millions of
programmers have used languages like Visual Basic if you need more proof). An interactive interpreter might also serve as a useful debugging and testing tool.
Other languages like Java might greatly simplify the task of writing distributed computing software. The key point is that different programming languages offer
different strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by combining languages
together, you can utilize the best features of each language and greatly simplify certain aspects of software development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C programming model which usually results
in programs that resemble this:

2.1 What is SWIG?

SWIG-3.0 Documentation

e A collection of functions and variables that do something useful.
e Amain () program that starts everything.
e A horrible collection of hacks that form some kind of user interface (but which no-one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less code, better flexibility, and
increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C program and using the high-level
language interface, but not the tedious and complex chore of making the two languages talk to each other. At the same time, SWIG recognizes that all applications

are different. Therefore, it provides a wide variety of customization features that let you change almost every aspect of the language bindings. This is the main
reason why SWIG has such a large user manual ;-).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */
double My variable = 3.0;

/* Compute factorial of n */
int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

}

/* Compute n mod m */
int my mod(int n, int m) {

return(n % m);

}

Suppose that you wanted to access these functions and the global variable My variable from Tcl. You start by making a SWIG interface file as shown below
(by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

/* File : example.i */

$module example

S{

/* Put headers and other declarations here */
extern double My variable;

extern int fact (int) ;

extern int my mod(int n, int m);

%}

extern double My variable;
extern int fact (int) ;
extern int my mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The $module direct