Bullet Collision Detection & Physics Library
btRaycastCallback.cpp
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16//#include <stdio.h>
17
24#include "btRaycastCallback.h"
25
27 :
28 m_from(from),
29 m_to(to),
30 //@BP Mod
31 m_flags(flags),
32 m_hitFraction(btScalar(1.))
33{
34
35}
36
37
38
39void btTriangleRaycastCallback::processTriangle(btVector3* triangle,int partId, int triangleIndex)
40{
41 const btVector3 &vert0=triangle[0];
42 const btVector3 &vert1=triangle[1];
43 const btVector3 &vert2=triangle[2];
44
45 btVector3 v10; v10 = vert1 - vert0 ;
46 btVector3 v20; v20 = vert2 - vert0 ;
47
48 btVector3 triangleNormal; triangleNormal = v10.cross( v20 );
49
50 const btScalar dist = vert0.dot(triangleNormal);
51 btScalar dist_a = triangleNormal.dot(m_from) ;
52 dist_a-= dist;
53 btScalar dist_b = triangleNormal.dot(m_to);
54 dist_b -= dist;
55
56 if ( dist_a * dist_b >= btScalar(0.0) )
57 {
58 return ; // same sign
59 }
60
61 if (((m_flags & kF_FilterBackfaces) != 0) && (dist_a <= btScalar(0.0)))
62 {
63 // Backface, skip check
64 return;
65 }
66
67
68 const btScalar proj_length=dist_a-dist_b;
69 const btScalar distance = (dist_a)/(proj_length);
70 // Now we have the intersection point on the plane, we'll see if it's inside the triangle
71 // Add an epsilon as a tolerance for the raycast,
72 // in case the ray hits exacly on the edge of the triangle.
73 // It must be scaled for the triangle size.
74
75 if(distance < m_hitFraction)
76 {
77
78
79 btScalar edge_tolerance =triangleNormal.length2();
80 edge_tolerance *= btScalar(-0.0001);
81 btVector3 point; point.setInterpolate3( m_from, m_to, distance);
82 {
83 btVector3 v0p; v0p = vert0 - point;
84 btVector3 v1p; v1p = vert1 - point;
85 btVector3 cp0; cp0 = v0p.cross( v1p );
86
87 if ( (btScalar)(cp0.dot(triangleNormal)) >=edge_tolerance)
88 {
89
90
91 btVector3 v2p; v2p = vert2 - point;
92 btVector3 cp1;
93 cp1 = v1p.cross( v2p);
94 if ( (btScalar)(cp1.dot(triangleNormal)) >=edge_tolerance)
95 {
96 btVector3 cp2;
97 cp2 = v2p.cross(v0p);
98
99 if ( (btScalar)(cp2.dot(triangleNormal)) >=edge_tolerance)
100 {
101 //@BP Mod
102 // Triangle normal isn't normalized
103 triangleNormal.normalize();
104
105 //@BP Mod - Allow for unflipped normal when raycasting against backfaces
106 if (((m_flags & kF_KeepUnflippedNormal) == 0) && (dist_a <= btScalar(0.0)))
107 {
108 m_hitFraction = reportHit(-triangleNormal,distance,partId,triangleIndex);
109 }
110 else
111 {
112 m_hitFraction = reportHit(triangleNormal,distance,partId,triangleIndex);
113 }
114 }
115 }
116 }
117 }
118 }
119}
120
121
122btTriangleConvexcastCallback::btTriangleConvexcastCallback (const btConvexShape* convexShape, const btTransform& convexShapeFrom, const btTransform& convexShapeTo, const btTransform& triangleToWorld, const btScalar triangleCollisionMargin)
123{
124 m_convexShape = convexShape;
125 m_convexShapeFrom = convexShapeFrom;
126 m_convexShapeTo = convexShapeTo;
127 m_triangleToWorld = triangleToWorld;
128 m_hitFraction = 1.0f;
129 m_triangleCollisionMargin = triangleCollisionMargin;
131}
132
133void
134btTriangleConvexcastCallback::processTriangle (btVector3* triangle, int partId, int triangleIndex)
135{
136 btTriangleShape triangleShape (triangle[0], triangle[1], triangle[2]);
138
139 btVoronoiSimplexSolver simplexSolver;
140 btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
141
142//#define USE_SUBSIMPLEX_CONVEX_CAST 1
143//if you reenable USE_SUBSIMPLEX_CONVEX_CAST see commented out code below
144#ifdef USE_SUBSIMPLEX_CONVEX_CAST
145 btSubsimplexConvexCast convexCaster(m_convexShape, &triangleShape, &simplexSolver);
146#else
147 //btGjkConvexCast convexCaster(m_convexShape,&triangleShape,&simplexSolver);
148 btContinuousConvexCollision convexCaster(m_convexShape,&triangleShape,&simplexSolver,&gjkEpaPenetrationSolver);
149#endif //#USE_SUBSIMPLEX_CONVEX_CAST
150
151 btConvexCast::CastResult castResult;
152 castResult.m_fraction = btScalar(1.);
155 {
156 //add hit
157 if (castResult.m_normal.length2() > btScalar(0.0001))
158 {
159 if (castResult.m_fraction < m_hitFraction)
160 {
161/* btContinuousConvexCast's normal is already in world space */
162/*
163#ifdef USE_SUBSIMPLEX_CONVEX_CAST
164 //rotate normal into worldspace
165 castResult.m_normal = m_convexShapeFrom.getBasis() * castResult.m_normal;
166#endif //USE_SUBSIMPLEX_CONVEX_CAST
167*/
168 castResult.m_normal.normalize();
169
170 reportHit (castResult.m_normal,
171 castResult.m_hitPoint,
172 castResult.m_fraction,
173 partId,
174 triangleIndex);
175 }
176 }
177 }
178}
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
btContinuousConvexCollision implements angular and linear time of impact for convex objects.
virtual void setMargin(btScalar margin)
The btConvexShape is an abstract shape interface, implemented by all convex shapes such as btBoxShape...
Definition: btConvexShape.h:32
EpaPenetrationDepthSolver uses the Expanding Polytope Algorithm to calculate the penetration depth be...
btSubsimplexConvexCast implements Gino van den Bergens' paper "Ray Casting against bteral Convex Obje...
virtual bool calcTimeOfImpact(const btTransform &fromA, const btTransform &toA, const btTransform &fromB, const btTransform &toB, CastResult &result)
SimsimplexConvexCast calculateTimeOfImpact calculates the time of impact+normal for the linear cast (...
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:34
virtual void processTriangle(btVector3 *triangle, int partId, int triangleIndex)
virtual btScalar reportHit(const btVector3 &hitNormalLocal, const btVector3 &hitPointLocal, btScalar hitFraction, int partId, int triangleIndex)=0
const btConvexShape * m_convexShape
btTriangleConvexcastCallback(const btConvexShape *convexShape, const btTransform &convexShapeFrom, const btTransform &convexShapeTo, const btTransform &triangleToWorld, const btScalar triangleCollisionMargin)
virtual void processTriangle(btVector3 *triangle, int partId, int triangleIndex)
btTriangleRaycastCallback(const btVector3 &from, const btVector3 &to, unsigned int flags=0)
virtual btScalar reportHit(const btVector3 &hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)=0
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:84
void setInterpolate3(const btVector3 &v0, const btVector3 &v1, btScalar rt)
Definition: btVector3.h:503
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
Definition: btVector3.h:389
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:235
btScalar length2() const
Return the length of the vector squared.
Definition: btVector3.h:257
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
Definition: btVector3.h:309
btVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points...
RayResult stores the closest result alternatively, add a callback method to decide about closest/all ...
Definition: btConvexCast.h:37