27#define HINGE_USE_OBSOLETE_SOLVER false
29#define HINGE_USE_FRAME_OFFSET true
44 m_enableAngularMotor(false),
47 m_useReferenceFrameA(useReferenceFrameA),
68 rbAxisA2 = axisInA.
cross(rbAxisA1);
69 rbAxisA1 = rbAxisA2.
cross(axisInA);
85#ifndef _BT_USE_CENTER_LIMIT_
90 m_relaxationFactor = 1.0f;
91 m_limitSoftness = 0.9f;
104m_angularOnly(false), m_enableAngularMotor(false),
107m_useReferenceFrameA(useReferenceFrameA),
137#ifndef _BT_USE_CENTER_LIMIT_
142 m_relaxationFactor = 1.0f;
143 m_limitSoftness = 0.9f;
144 m_solveLimit =
false;
158m_enableAngularMotor(false),
161m_useReferenceFrameA(useReferenceFrameA),
168#ifndef _BT_USE_CENTER_LIMIT_
173 m_relaxationFactor = 1.0f;
174 m_limitSoftness = 0.9f;
175 m_solveLimit =
false;
188m_enableAngularMotor(false),
191m_useReferenceFrameA(useReferenceFrameA),
201#ifndef _BT_USE_CENTER_LIMIT_
206 m_relaxationFactor = 1.0f;
207 m_limitSoftness = 0.9f;
208 m_solveLimit =
false;
226 btVector3 relPos = pivotBInW - pivotAInW;
240 for (
int i=0;i<3;i++)
326 return accAngle + result;
489 for(i = 0; i < 3; i++)
550#ifdef _BT_USE_CENTER_LIMIT_
555 limit = (limit_err >
btScalar(0.0)) ? 1 : 2;
574 if(limit && (lostop == histop))
593 k = info->
fps * currERP;
616#ifdef _BT_USE_CENTER_LIMIT_
619 btScalar bounce = m_relaxationFactor;
624 vel -= angVelB.
dot(ax1);
643 if(newc < info->m_constraintError[srow])
650#ifdef _BT_USE_CENTER_LIMIT_
698#ifdef _BT_USE_CENTER_LIMIT_
703 m_solveLimit =
false;
704 if (m_lowerLimit <= m_upperLimit)
746 if (qHinge.
getZ() < 0)
747 targetAngle = -targetAngle;
754#ifdef _BT_USE_CENTER_LIMIT_
757 if (m_lowerLimit < m_upperLimit)
759 if (targetAngle < m_lowerLimit)
760 targetAngle = m_lowerLimit;
761 else if (targetAngle > m_upperLimit)
762 targetAngle = m_upperLimit;
767 btScalar dAngle = targetAngle - curAngle;
805 btVector3 ax1 = ax1A * factA + ax1B * factB;
828 relA = orthoA + totalDist * factA;
829 relB = orthoB - totalDist * factB;
831 p = orthoB * factA + orthoA * factB;
844 tmpA = relA.
cross(p);
845 tmpB = relB.
cross(p);
848 tmpA = relA.
cross(q);
849 tmpB = relB.
cross(q);
858 tmpA = relA.
cross(ax1);
859 tmpB = relB.
cross(ax1);
886 rhs = k * q.
dot(ofs);
888 rhs = k * ax1.
dot(ofs);
928 k = info->
fps * normalErp;
941#ifdef _BT_USE_CENTER_LIMIT_
946 limit = (limit_err >
btScalar(0.0)) ? 1 : 2;
965 if(limit && (lostop == histop))
984 k = info->
fps * currERP;
1007#ifdef _BT_USE_CENTER_LIMIT_
1010 btScalar bounce = m_relaxationFactor;
1015 vel -= angVelB.
dot(ax1);
1034 if(newc < info->m_constraintError[srow])
1041#ifdef _BT_USE_CENTER_LIMIT_
1055 if((axis == -1) || (axis == 5))
1089 if((axis == -1) || (axis == 5))
#define HINGE_USE_OBSOLETE_SOLVER
static btScalar btShortestAngularDistance(btScalar accAngle, btScalar curAngle)
static btScalar btNormalizeAnglePositive(btScalar angle)
static btVector3 vHinge(0, 0, btScalar(1))
static btScalar btShortestAngleUpdate(btScalar accAngle, btScalar curAngle)
#define HINGE_USE_FRAME_OFFSET
@ BT_HINGE_FLAGS_CFM_STOP
@ BT_HINGE_FLAGS_CFM_NORM
@ BT_HINGE_FLAGS_ERP_NORM
@ BT_HINGE_FLAGS_ERP_STOP
#define _BT_USE_CENTER_LIMIT_
btQuaternion shortestArcQuat(const btVector3 &v0, const btVector3 &v1)
btVector3 quatRotate(const btQuaternion &rotation, const btVector3 &v)
btScalar btNormalizeAngle(btScalar angleInRadians)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btSqrt(btScalar y)
btScalar btAtan2(btScalar x, btScalar y)
btScalar btFabs(btScalar x)
btScalar btFmod(btScalar x, btScalar y)
#define btAssertConstrParams(_par)
btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
void btPlaneSpace1(const T &n, T &p, T &q)
btScalar getBiasFactor() const
Returns limit's bias factor.
btScalar getCorrection() const
Returns correction value evaluated when test() was invoked.
void test(const btScalar angle)
Checks conastaint angle against limit.
void fit(btScalar &angle) const
Checks given angle against limit.
btScalar getRelaxationFactor() const
Returns limit's relaxation factor.
void setAccumulatedHingeAngle(btScalar accAngle)
btScalar m_accumulatedAngle
btScalar getAccumulatedHingeAngle()
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
const btRigidBody & getRigidBodyB() const
btJacobianEntry m_jacAng[3]
btScalar getHingeAngle()
The getHingeAngle gives the hinge angle in range [-PI,PI].
btScalar m_maxMotorImpulse
void setMotorTarget(const btQuaternion &qAinB, btScalar dt)
btScalar m_accLimitImpulse
void getInfo2NonVirtual(btConstraintInfo2 *info, const btTransform &transA, const btTransform &transB, const btVector3 &angVelA, const btVector3 &angVelB)
virtual void getInfo2(btConstraintInfo2 *info)
internal method used by the constraint solver, don't use them directly
btScalar getUpperLimit() const
void setFrames(const btTransform &frameA, const btTransform &frameB)
btScalar m_accMotorImpulse
btScalar getLowerLimit() const
btHingeConstraint(btRigidBody &rbA, btRigidBody &rbB, const btVector3 &pivotInA, const btVector3 &pivotInB, const btVector3 &axisInA, const btVector3 &axisInB, bool useReferenceFrameA=false)
bool m_useSolveConstraintObsolete
bool m_useOffsetForConstraintFrame
void updateRHS(btScalar timeStep)
virtual btScalar getParam(int num, int axis=-1) const
return the local value of parameter
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
bool m_useReferenceFrameA
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
btScalar m_motorTargetVelocity
void getInfo2Internal(btConstraintInfo2 *info, const btTransform &transA, const btTransform &transB, const btVector3 &angVelA, const btVector3 &angVelB)
virtual void setParam(int num, btScalar value, int axis=-1)
override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0...
void getInfo2InternalUsingFrameOffset(btConstraintInfo2 *info, const btTransform &transA, const btTransform &transB, const btVector3 &angVelA, const btVector3 &angVelB)
void testLimit(const btTransform &transA, const btTransform &transB)
const btRigidBody & getRigidBodyA() const
bool getEnableAngularMotor()
void getInfo1NonVirtual(btConstraintInfo1 *info)
Jacobian entry is an abstraction that allows to describe constraints it can be used in combination wi...
btMatrix3x3 transpose() const
Return the transpose of the matrix.
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
const btScalar & getZ() const
Return the z value.
The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatr...
btScalar getAngle() const
Return the angle [0, 2Pi] of rotation represented by this quaternion.
btQuaternion inverse() const
Return the inverse of this quaternion.
btQuaternion & normalize()
Normalize the quaternion Such that x^2 + y^2 + z^2 +w^2 = 1.
The btRigidBody is the main class for rigid body objects.
btScalar computeAngularImpulseDenominator(const btVector3 &axis) const
btScalar getInvMass() const
const btVector3 & getInvInertiaDiagLocal() const
const btTransform & getCenterOfMassTransform() const
const btVector3 & getAngularVelocity() const
const btVector3 & getCenterOfMassPosition() const
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btScalar m_appliedImpulse
btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
internal method used by the constraint solver, don't use them directly
btVector3 can be used to represent 3D points and vectors.
const btScalar & getZ() const
Return the z value.
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
void getSkewSymmetricMatrix(btVector3 *v0, btVector3 *v1, btVector3 *v2) const
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
btVector3 normalized() const
Return a normalized version of this vector.
btScalar length2() const
Return the length of the vector squared.
const btScalar & getY() const
Return the y value.
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
const btScalar & getX() const
Return the x value.
btScalar * m_J2angularAxis
btScalar * m_J1linearAxis
btScalar * m_J2linearAxis
btScalar * m_J1angularAxis
btScalar * m_constraintError