Bullet Collision Detection & Physics Library
btSolverBody.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef BT_SOLVER_BODY_H
17#define BT_SOLVER_BODY_H
18
19class btRigidBody;
22
25
27#ifdef BT_USE_SSE
28#define USE_SIMD 1
29#endif //
30
31
32#ifdef USE_SIMD
33
34struct btSimdScalar
35{
37 {
38
39 }
40
42 :m_vec128 (_mm_set1_ps(fl))
43 {
44 }
45
47 :m_vec128(v128)
48 {
49 }
50 union
51 {
52 __m128 m_vec128;
53 float m_floats[4];
54 int m_ints[4];
55 btScalar m_unusedPadding;
56 };
57 SIMD_FORCE_INLINE __m128 get128()
58 {
59 return m_vec128;
60 }
61
62 SIMD_FORCE_INLINE const __m128 get128() const
63 {
64 return m_vec128;
65 }
66
67 SIMD_FORCE_INLINE void set128(__m128 v128)
68 {
69 m_vec128 = v128;
70 }
71
72 SIMD_FORCE_INLINE operator __m128()
73 {
74 return m_vec128;
75 }
76 SIMD_FORCE_INLINE operator const __m128() const
77 {
78 return m_vec128;
79 }
80
81 SIMD_FORCE_INLINE operator float() const
82 {
83 return m_floats[0];
84 }
85
86};
87
90operator*(const btSimdScalar& v1, const btSimdScalar& v2)
91{
92 return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
93}
94
97operator+(const btSimdScalar& v1, const btSimdScalar& v2)
98{
99 return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
100}
101
102
103#else
104#define btSimdScalar btScalar
105#endif
106
109{
123
125 void setWorldTransform(const btTransform& worldTransform)
126 {
127 m_worldTransform = worldTransform;
128 }
129
131 {
132 return m_worldTransform;
133 }
134
135
136
138 {
139 if (m_originalBody)
140 velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
141 else
142 velocity.setValue(0,0,0);
143 }
144
145
147 {
148 if (m_originalBody)
149 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
150 else
151 velocity.setValue(0,0,0);
152 }
153
155 {
156 if (m_originalBody)
157 angVel =m_angularVelocity+m_deltaAngularVelocity;
158 else
159 angVel.setValue(0,0,0);
160 }
161
162
163 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
164 SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
165 {
166 if (m_originalBody)
167 {
168 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
169 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
170 }
171 }
172
173 SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
174 {
175 if (m_originalBody)
176 {
177 m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
178 m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
179 }
180 }
181
182
183
185 {
186 return m_deltaLinearVelocity;
187 }
188
190 {
191 return m_deltaAngularVelocity;
192 }
193
195 {
196 return m_pushVelocity;
197 }
198
200 {
201 return m_turnVelocity;
202 }
203
204
207
209 {
210 return m_deltaLinearVelocity;
211 }
212
214 {
215 return m_deltaAngularVelocity;
216 }
217
219 {
220 return m_angularFactor;
221 }
222
224 {
225 return m_invMass;
226 }
227
228 void internalSetInvMass(const btVector3& invMass)
229 {
230 m_invMass = invMass;
231 }
232
234 {
235 return m_pushVelocity;
236 }
237
239 {
240 return m_turnVelocity;
241 }
242
244 {
245 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
246 }
247
249 {
250 angVel = m_angularVelocity+m_deltaAngularVelocity;
251 }
252
253
254 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
255 SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
256 {
257 if (m_originalBody)
258 {
259 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
260 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
261 }
262 }
263
264
265
266
268 {
269 if (m_originalBody)
270 {
271 m_linearVelocity +=m_deltaLinearVelocity;
272 m_angularVelocity += m_deltaAngularVelocity;
273
274 //m_originalBody->setCompanionId(-1);
275 }
276 }
277
278
279 void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
280 {
281 (void) timeStep;
282 if (m_originalBody)
283 {
284 m_linearVelocity += m_deltaLinearVelocity;
285 m_angularVelocity += m_deltaAngularVelocity;
286
287 //correct the position/orientation based on push/turn recovery
288 btTransform newTransform;
289 if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
290 {
291 // btQuaternion orn = m_worldTransform.getRotation();
292 btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
293 m_worldTransform = newTransform;
294 }
295 //m_worldTransform.setRotation(orn);
296 //m_originalBody->setCompanionId(-1);
297 }
298 }
299
300
301
302};
303
304#endif //BT_SOLVER_BODY_H
305
306
btMatrix3x3 operator*(const btMatrix3x3 &m, const btScalar &k)
Definition: btMatrix3x3.h:836
btMatrix3x3 operator+(const btMatrix3x3 &m1, const btMatrix3x3 &m2)
Definition: btMatrix3x3.h:858
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
#define SIMD_FORCE_INLINE
Definition: btScalar.h:81
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later,...
Definition: btSolverBody.h:104
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:63
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:34
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:84
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:652
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:109
void getAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:154
const btVector3 & getPushVelocity() const
Definition: btSolverBody.h:194
const btVector3 & getTurnVelocity() const
Definition: btSolverBody.h:199
const btVector3 & getDeltaLinearVelocity() const
Definition: btSolverBody.h:184
btVector3 m_linearFactor
Definition: btSolverBody.h:115
btVector3 m_invMass
Definition: btSolverBody.h:116
btVector3 m_pushVelocity
Definition: btSolverBody.h:117
btVector3 & internalGetDeltaAngularVelocity()
Definition: btSolverBody.h:213
void setWorldTransform(const btTransform &worldTransform)
Definition: btSolverBody.h:125
btVector3 m_angularVelocity
Definition: btSolverBody.h:120
btVector3 m_deltaLinearVelocity
Definition: btSolverBody.h:112
btRigidBody * m_originalBody
Definition: btSolverBody.h:124
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
Definition: btSolverBody.h:173
btVector3 & internalGetTurnVelocity()
Definition: btSolverBody.h:238
BT_DECLARE_ALIGNED_ALLOCATOR()
btVector3 m_deltaAngularVelocity
Definition: btSolverBody.h:113
btVector3 m_linearVelocity
Definition: btSolverBody.h:119
void getVelocityInLocalPointNoDelta(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:137
const btVector3 & getDeltaAngularVelocity() const
Definition: btSolverBody.h:189
btTransform m_worldTransform
Definition: btSolverBody.h:111
btVector3 & internalGetPushVelocity()
Definition: btSolverBody.h:233
const btVector3 & internalGetAngularFactor() const
Definition: btSolverBody.h:218
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
Definition: btSolverBody.h:279
btVector3 & internalGetDeltaLinearVelocity()
some internal methods, don't use them
Definition: btSolverBody.h:208
void writebackVelocity()
Definition: btSolverBody.h:267
void internalSetInvMass(const btVector3 &invMass)
Definition: btSolverBody.h:228
btVector3 m_angularFactor
Definition: btSolverBody.h:114
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:255
void internalGetAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:248
btVector3 m_externalTorqueImpulse
Definition: btSolverBody.h:122
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:243
const btTransform & getWorldTransform() const
Definition: btSolverBody.h:130
void applyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:164
void getVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:146
const btVector3 & internalGetInvMass() const
Definition: btSolverBody.h:223
btVector3 m_turnVelocity
Definition: btSolverBody.h:118
btVector3 m_externalForceImpulse
Definition: btSolverBody.h:121