51 , m_frameInA(frameInA)
52 , m_frameInB(frameInB)
53 , m_rotateOrder(rotOrder)
62 , m_frameInB(frameInB)
63 , m_rotateOrder(rotOrder)
456 for(i = 0; i < 3; i++)
485 int row =
setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
486 setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
494 for (
int i=0;i<3 ;i++ )
524 int indx1 = (i + 1) % 3;
525 int indx2 = (i + 2) % 3;
527 #define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION 1.0e-3
536 if( indx1Violated && indx2Violated )
540 row +=
get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
551 int row = row_offset;
554 int cIdx[] = {0, 1, 2};
557 case RO_XYZ : cIdx[0] = 0; cIdx[1] = 1; cIdx[2] = 2;
break;
558 case RO_XZY : cIdx[0] = 0; cIdx[1] = 2; cIdx[2] = 1;
break;
559 case RO_YXZ : cIdx[0] = 1; cIdx[1] = 0; cIdx[2] = 2;
break;
560 case RO_YZX : cIdx[0] = 1; cIdx[1] = 2; cIdx[2] = 0;
break;
561 case RO_ZXY : cIdx[0] = 2; cIdx[1] = 0; cIdx[2] = 1;
break;
562 case RO_ZYX : cIdx[0] = 2; cIdx[1] = 1; cIdx[2] = 0;
break;
566 for (
int ii = 0; ii < 3 ; ii++ )
589 row +=
get_limit_motor_info2(&
m_angularLimits[i],transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
610 for(
int i = 0; i < 3; i++)
626 J2[srow+0] = -ax1[0];
627 J2[srow+1] = -ax1[1];
628 J2[srow+2] = -ax1[2];
637 tmpA = relA.
cross(ax1);
638 tmpB = relB.
cross(ax1);
657 int srow = row * info->
rowskip;
661 btScalar vel = rotational ? angVelA.
dot(ax1) - angVelB.
dot(ax1) : linVelA.
dot(ax1) - linVelB.
dot(ax1);
663 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
673 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
682 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
687 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
703 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
714 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
747 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
762 lowLimit = error > 0 && curServoTarget>limot->
m_loLimit ? curServoTarget : limot->
m_loLimit;
763 hiLimit = error < 0 && curServoTarget<limot->
m_hiLimit ? curServoTarget : limot->
m_hiLimit;
771 info->
m_constraintError[srow] = mot_fact * targetvelocity * (rotational ? -1 : 1);
782 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
795 btScalar vel = rotational ? angVelA.
dot(ax1) - angVelB.
dot(ax1) : linVelA.
dot(ax1) - linVelB.
dot(ax1);
801 btScalar angularfreq = sqrt(ks / m);
815 btScalar fd = -kd * (vel) * (rotational ? -1 : 1) * dt;
833 info->
cfm[srow] = cfm;
846 if((axis >= 0) && (axis < 3))
870 else if((axis >=3) && (axis < 6))
904 if((axis >= 0) && (axis < 3))
928 else if((axis >=3) && (axis < 6))
970 xAxis[1], yAxis[1], zAxis[1],
971 xAxis[2], yAxis[2], zAxis[2]);
982 btAssert((index >= 0) && (index < 6));
991 btAssert((index >= 0) && (index < 6));
1000 btAssert((index >= 0) && (index < 6));
1009 btAssert((index >= 0) && (index < 6));
1020 btAssert((index >= 0) && (index < 6));
1063 btAssert((index >= 0) && (index < 6));
1072 btAssert((index >= 0) && (index < 6));
1081 btAssert((index >= 0) && (index < 6));
1093 btAssert((index >= 0) && (index < 6));
1107 for( i = 0; i < 3; i++)
1109 for(i = 0; i < 3; i++)
1115 btAssert((index >= 0) && (index < 6));
1125 btAssert((index >= 0) && (index < 6));
1158 if(loLimit > hiLimit) {
1162 else if(loLimit == hiLimit) {
#define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION
#define BT_6DOF_FLAGS_AXIS_SHIFT2
@ BT_6DOF_FLAGS_ERP_MOTO2
@ BT_6DOF_FLAGS_CFM_MOTO2
@ BT_6DOF_FLAGS_ERP_STOP2
@ BT_6DOF_FLAGS_CFM_STOP2
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btAtan2(btScalar x, btScalar y)
btScalar btAsin(btScalar x)
#define btAssertConstrParams(_par)
btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
@ D6_SPRING_2_CONSTRAINT_TYPE
btVector3 m_calculatedAxis[3]
static bool matrixToEulerYZX(const btMatrix3x3 &mat, btVector3 &xyz)
btRotationalLimitMotor2 m_angularLimits[3]
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
void setStiffness(int index, btScalar stiffness, bool limitIfNeeded=true)
virtual btScalar getParam(int num, int axis=-1) const
return the local value of parameter
void calculateLinearInfo()
static bool matrixToEulerYXZ(const btMatrix3x3 &mat, btVector3 &xyz)
void setAxis(const btVector3 &axis1, const btVector3 &axis2)
int get_limit_motor_info2(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB, btConstraintInfo2 *info, int row, btVector3 &ax1, int rotational, int rotAllowed=false)
int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
btVector3 m_calculatedAxisAngleDiff
btVector3 m_calculatedLinearDiff
void setDamping(int index, btScalar damping, bool limitIfNeeded=true)
void setBounce(int index, btScalar bounce)
static bool matrixToEulerZXY(const btMatrix3x3 &mat, btVector3 &xyz)
virtual void setParam(int num, btScalar value, int axis=-1)
override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0...
static bool matrixToEulerXYZ(const btMatrix3x3 &mat, btVector3 &xyz)
btTransform m_calculatedTransformA
void enableMotor(int index, bool onOff)
btTranslationalLimitMotor2 m_linearLimits
btTransform m_calculatedTransformB
void calculateJacobi(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, btConstraintInfo2 *info, int srow, btVector3 &ax1, int rotational, int rotAllowed)
void calculateAngleInfo()
virtual void getInfo2(btConstraintInfo2 *info)
internal method used by the constraint solver, don't use them directly
void enableSpring(int index, bool onOff)
RotateOrder m_rotateOrder
void setServoTarget(int index, btScalar target)
void testAngularLimitMotor(int axis_index)
static btScalar btGetMatrixElem(const btMatrix3x3 &mat, int index)
void setMaxMotorForce(int index, btScalar force)
static bool matrixToEulerZYX(const btMatrix3x3 &mat, btVector3 &xyz)
void setFrames(const btTransform &frameA, const btTransform &frameB)
btVector3 getAxis(int axis_index) const
static bool matrixToEulerXZY(const btMatrix3x3 &mat, btVector3 &xyz)
void setTargetVelocity(int index, btScalar velocity)
void setEquilibriumPoint()
void setServo(int index, bool onOff)
btGeneric6DofSpring2Constraint(btRigidBody &rbA, btRigidBody &rbB, const btTransform &frameInA, const btTransform &frameInB, RotateOrder rotOrder=RO_XYZ)
2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev Added support for generic constrain...
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
int setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
void calculateTransforms()
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
btMatrix3x3 inverse() const
Return the inverse of the matrix.
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
The btRigidBody is the main class for rigid body objects.
btScalar getInvMass() const
const btTransform & getCenterOfMassTransform() const
const btVector3 & getAngularVelocity() const
const btVector3 & getLinearVelocity() const
bool m_springDampingLimited
btScalar m_targetVelocity
void testLimitValue(btScalar test_value)
btScalar m_currentLimitErrorHi
btScalar m_currentPosition
bool m_springStiffnessLimited
btScalar m_currentLimitError
btScalar m_springStiffness
btScalar m_equilibriumPoint
btVector3 m_targetVelocity
btVector3 m_equilibriumPoint
btVector3 m_currentLinearDiff
bool m_springDampingLimited[3]
btVector3 m_currentLimitError
btVector3 m_springStiffness
void testLimitValue(int limitIndex, btScalar test_value)
btVector3 m_currentLimitErrorHi
btVector3 m_maxMotorForce
bool m_springStiffnessLimited[3]
btVector3 m_springDamping
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
internal method used by the constraint solver, don't use them directly
const btRigidBody & getRigidBodyA() const
const btRigidBody & getRigidBodyB() const
btVector3 can be used to represent 3D points and vectors.
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
btVector3 normalized() const
Return a normalized version of this vector.
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
btScalar * m_J2angularAxis
btScalar * m_J1linearAxis
btScalar * m_J2linearAxis
btScalar * m_J1angularAxis
btScalar * m_constraintError