Bullet Collision Detection & Physics Library
gim_linear_math.h
Go to the documentation of this file.
1#ifndef GIM_LINEAR_H_INCLUDED
2#define GIM_LINEAR_H_INCLUDED
3
8/*
9-----------------------------------------------------------------------------
10This source file is part of GIMPACT Library.
11
12For the latest info, see http://gimpact.sourceforge.net/
13
14Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
15email: projectileman@yahoo.com
16
17 This library is free software; you can redistribute it and/or
18 modify it under the terms of EITHER:
19 (1) The GNU Lesser General Public License as published by the Free
20 Software Foundation; either version 2.1 of the License, or (at
21 your option) any later version. The text of the GNU Lesser
22 General Public License is included with this library in the
23 file GIMPACT-LICENSE-LGPL.TXT.
24 (2) The BSD-style license that is included with this library in
25 the file GIMPACT-LICENSE-BSD.TXT.
26 (3) The zlib/libpng license that is included with this library in
27 the file GIMPACT-LICENSE-ZLIB.TXT.
28
29 This library is distributed in the hope that it will be useful,
30 but WITHOUT ANY WARRANTY; without even the implied warranty of
31 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
32 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
33
34-----------------------------------------------------------------------------
35*/
36
37
38#include "gim_math.h"
39#include "gim_geom_types.h"
40
41
42
43
45#define VEC_ZERO_2(a) \
46{ \
47 (a)[0] = (a)[1] = 0.0f; \
48}\
49
50
52#define VEC_ZERO(a) \
53{ \
54 (a)[0] = (a)[1] = (a)[2] = 0.0f; \
55}\
56
57
59#define VEC_ZERO_4(a) \
60{ \
61 (a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f; \
62}\
63
64
66#define VEC_COPY_2(b,a) \
67{ \
68 (b)[0] = (a)[0]; \
69 (b)[1] = (a)[1]; \
70}\
71
72
74#define VEC_COPY(b,a) \
75{ \
76 (b)[0] = (a)[0]; \
77 (b)[1] = (a)[1]; \
78 (b)[2] = (a)[2]; \
79}\
80
81
83#define VEC_COPY_4(b,a) \
84{ \
85 (b)[0] = (a)[0]; \
86 (b)[1] = (a)[1]; \
87 (b)[2] = (a)[2]; \
88 (b)[3] = (a)[3]; \
89}\
90
92#define VEC_SWAP(b,a) \
93{ \
94 GIM_SWAP_NUMBERS((b)[0],(a)[0]);\
95 GIM_SWAP_NUMBERS((b)[1],(a)[1]);\
96 GIM_SWAP_NUMBERS((b)[2],(a)[2]);\
97}\
98
100#define VEC_DIFF_2(v21,v2,v1) \
101{ \
102 (v21)[0] = (v2)[0] - (v1)[0]; \
103 (v21)[1] = (v2)[1] - (v1)[1]; \
104}\
105
106
108#define VEC_DIFF(v21,v2,v1) \
109{ \
110 (v21)[0] = (v2)[0] - (v1)[0]; \
111 (v21)[1] = (v2)[1] - (v1)[1]; \
112 (v21)[2] = (v2)[2] - (v1)[2]; \
113}\
114
115
117#define VEC_DIFF_4(v21,v2,v1) \
118{ \
119 (v21)[0] = (v2)[0] - (v1)[0]; \
120 (v21)[1] = (v2)[1] - (v1)[1]; \
121 (v21)[2] = (v2)[2] - (v1)[2]; \
122 (v21)[3] = (v2)[3] - (v1)[3]; \
123}\
124
125
127#define VEC_SUM_2(v21,v2,v1) \
128{ \
129 (v21)[0] = (v2)[0] + (v1)[0]; \
130 (v21)[1] = (v2)[1] + (v1)[1]; \
131}\
132
133
135#define VEC_SUM(v21,v2,v1) \
136{ \
137 (v21)[0] = (v2)[0] + (v1)[0]; \
138 (v21)[1] = (v2)[1] + (v1)[1]; \
139 (v21)[2] = (v2)[2] + (v1)[2]; \
140}\
141
142
144#define VEC_SUM_4(v21,v2,v1) \
145{ \
146 (v21)[0] = (v2)[0] + (v1)[0]; \
147 (v21)[1] = (v2)[1] + (v1)[1]; \
148 (v21)[2] = (v2)[2] + (v1)[2]; \
149 (v21)[3] = (v2)[3] + (v1)[3]; \
150}\
151
152
154#define VEC_SCALE_2(c,a,b) \
155{ \
156 (c)[0] = (a)*(b)[0]; \
157 (c)[1] = (a)*(b)[1]; \
158}\
159
160
162#define VEC_SCALE(c,a,b) \
163{ \
164 (c)[0] = (a)*(b)[0]; \
165 (c)[1] = (a)*(b)[1]; \
166 (c)[2] = (a)*(b)[2]; \
167}\
168
169
171#define VEC_SCALE_4(c,a,b) \
172{ \
173 (c)[0] = (a)*(b)[0]; \
174 (c)[1] = (a)*(b)[1]; \
175 (c)[2] = (a)*(b)[2]; \
176 (c)[3] = (a)*(b)[3]; \
177}\
178
179
181#define VEC_ACCUM_2(c,a,b) \
182{ \
183 (c)[0] += (a)*(b)[0]; \
184 (c)[1] += (a)*(b)[1]; \
185}\
186
187
189#define VEC_ACCUM(c,a,b) \
190{ \
191 (c)[0] += (a)*(b)[0]; \
192 (c)[1] += (a)*(b)[1]; \
193 (c)[2] += (a)*(b)[2]; \
194}\
195
196
198#define VEC_ACCUM_4(c,a,b) \
199{ \
200 (c)[0] += (a)*(b)[0]; \
201 (c)[1] += (a)*(b)[1]; \
202 (c)[2] += (a)*(b)[2]; \
203 (c)[3] += (a)*(b)[3]; \
204}\
205
206
208#define VEC_DOT_2(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1])
209
210
212#define VEC_DOT(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2])
213
215#define VEC_DOT_4(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] + (a)[3]*(b)[3])
216
218#define VEC_IMPACT_SQ(bsq,direction,position) {\
219 GREAL _llel_ = VEC_DOT(direction, position);\
220 bsq = VEC_DOT(position, position) - _llel_*_llel_;\
221}\
222
223
225#define VEC_IMPACT(bsq,direction,position) {\
226 VEC_IMPACT_SQ(bsq,direction,position); \
227 GIM_SQRT(bsq,bsq); \
228}\
229
231#define VEC_LENGTH_2(a,l)\
232{\
233 GREAL _pp = VEC_DOT_2(a,a);\
234 GIM_SQRT(_pp,l);\
235}\
236
237
239#define VEC_LENGTH(a,l)\
240{\
241 GREAL _pp = VEC_DOT(a,a);\
242 GIM_SQRT(_pp,l);\
243}\
244
245
247#define VEC_LENGTH_4(a,l)\
248{\
249 GREAL _pp = VEC_DOT_4(a,a);\
250 GIM_SQRT(_pp,l);\
251}\
252
254#define VEC_INV_LENGTH_2(a,l)\
255{\
256 GREAL _pp = VEC_DOT_2(a,a);\
257 GIM_INV_SQRT(_pp,l);\
258}\
259
260
262#define VEC_INV_LENGTH(a,l)\
263{\
264 GREAL _pp = VEC_DOT(a,a);\
265 GIM_INV_SQRT(_pp,l);\
266}\
267
268
270#define VEC_INV_LENGTH_4(a,l)\
271{\
272 GREAL _pp = VEC_DOT_4(a,a);\
273 GIM_INV_SQRT(_pp,l);\
274}\
275
276
277
279#define VEC_DISTANCE(_len,_va,_vb) {\
280 vec3f _tmp_; \
281 VEC_DIFF(_tmp_, _vb, _va); \
282 VEC_LENGTH(_tmp_,_len); \
283}\
284
285
287#define VEC_CONJUGATE_LENGTH(a,l)\
288{\
289 GREAL _pp = 1.0 - a[0]*a[0] - a[1]*a[1] - a[2]*a[2];\
290 GIM_SQRT(_pp,l);\
291}\
292
293
295#define VEC_NORMALIZE(a) { \
296 GREAL len;\
297 VEC_INV_LENGTH(a,len); \
298 if(len<G_REAL_INFINITY)\
299 {\
300 a[0] *= len; \
301 a[1] *= len; \
302 a[2] *= len; \
303 } \
304}\
305
307#define VEC_RENORMALIZE(a,newlen) { \
308 GREAL len;\
309 VEC_INV_LENGTH(a,len); \
310 if(len<G_REAL_INFINITY)\
311 {\
312 len *= newlen;\
313 a[0] *= len; \
314 a[1] *= len; \
315 a[2] *= len; \
316 } \
317}\
318
320#define VEC_CROSS(c,a,b) \
321{ \
322 c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
323 c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
324 c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
325}\
326
327
330#define VEC_PERPENDICULAR(vp,v,n) \
331{ \
332 GREAL dot = VEC_DOT(v, n); \
333 vp[0] = (v)[0] - dot*(n)[0]; \
334 vp[1] = (v)[1] - dot*(n)[1]; \
335 vp[2] = (v)[2] - dot*(n)[2]; \
336}\
337
338
340#define VEC_PARALLEL(vp,v,n) \
341{ \
342 GREAL dot = VEC_DOT(v, n); \
343 vp[0] = (dot) * (n)[0]; \
344 vp[1] = (dot) * (n)[1]; \
345 vp[2] = (dot) * (n)[2]; \
346}\
347
350#define VEC_PROJECT(vp,v,n) \
351{ \
352 GREAL scalar = VEC_DOT(v, n); \
353 scalar/= VEC_DOT(n, n); \
354 vp[0] = (scalar) * (n)[0]; \
355 vp[1] = (scalar) * (n)[1]; \
356 vp[2] = (scalar) * (n)[2]; \
357}\
358
359
361#define VEC_UNPROJECT(vp,v,n) \
362{ \
363 GREAL scalar = VEC_DOT(v, n); \
364 scalar = VEC_DOT(n, n)/scalar; \
365 vp[0] = (scalar) * (n)[0]; \
366 vp[1] = (scalar) * (n)[1]; \
367 vp[2] = (scalar) * (n)[2]; \
368}\
369
370
373#define VEC_REFLECT(vr,v,n) \
374{ \
375 GREAL dot = VEC_DOT(v, n); \
376 vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
377 vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
378 vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
379}\
380
381
384#define VEC_BLEND_AB(vr,sa,a,sb,b) \
385{ \
386 vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
387 vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
388 vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
389}\
390
393#define VEC_BLEND(vr,a,b,s) VEC_BLEND_AB(vr,(1-s),a,s,b)
394
395#define VEC_SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
396
398#define VEC_MAYOR_COORD(vec, maxc)\
399{\
400 GREAL A[] = {fabs(vec[0]),fabs(vec[1]),fabs(vec[2])};\
401 maxc = A[0]>A[1]?(A[0]>A[2]?0:2):(A[1]>A[2]?1:2);\
402}\
403
405#define VEC_MINOR_AXES(vec, i0, i1)\
406{\
407 VEC_MAYOR_COORD(vec,i0);\
408 i0 = (i0+1)%3;\
409 i1 = (i0+1)%3;\
410}\
411
412
413
414
415#define VEC_EQUAL(v1,v2) (v1[0]==v2[0]&&v1[1]==v2[1]&&v1[2]==v2[2])
416
417#define VEC_NEAR_EQUAL(v1,v2) (GIM_NEAR_EQUAL(v1[0],v2[0])&&GIM_NEAR_EQUAL(v1[1],v2[1])&&GIM_NEAR_EQUAL(v1[2],v2[2]))
418
419
421#define X_AXIS_CROSS_VEC(dst,src)\
422{ \
423 dst[0] = 0.0f; \
424 dst[1] = -src[2]; \
425 dst[2] = src[1]; \
426}\
427
428#define Y_AXIS_CROSS_VEC(dst,src)\
429{ \
430 dst[0] = src[2]; \
431 dst[1] = 0.0f; \
432 dst[2] = -src[0]; \
433}\
434
435#define Z_AXIS_CROSS_VEC(dst,src)\
436{ \
437 dst[0] = -src[1]; \
438 dst[1] = src[0]; \
439 dst[2] = 0.0f; \
440}\
441
442
443
444
445
446
448#define IDENTIFY_MATRIX_3X3(m) \
449{ \
450 m[0][0] = 1.0; \
451 m[0][1] = 0.0; \
452 m[0][2] = 0.0; \
453 \
454 m[1][0] = 0.0; \
455 m[1][1] = 1.0; \
456 m[1][2] = 0.0; \
457 \
458 m[2][0] = 0.0; \
459 m[2][1] = 0.0; \
460 m[2][2] = 1.0; \
461}\
462
464#define IDENTIFY_MATRIX_4X4(m) \
465{ \
466 m[0][0] = 1.0; \
467 m[0][1] = 0.0; \
468 m[0][2] = 0.0; \
469 m[0][3] = 0.0; \
470 \
471 m[1][0] = 0.0; \
472 m[1][1] = 1.0; \
473 m[1][2] = 0.0; \
474 m[1][3] = 0.0; \
475 \
476 m[2][0] = 0.0; \
477 m[2][1] = 0.0; \
478 m[2][2] = 1.0; \
479 m[2][3] = 0.0; \
480 \
481 m[3][0] = 0.0; \
482 m[3][1] = 0.0; \
483 m[3][2] = 0.0; \
484 m[3][3] = 1.0; \
485}\
486
488#define ZERO_MATRIX_4X4(m) \
489{ \
490 m[0][0] = 0.0; \
491 m[0][1] = 0.0; \
492 m[0][2] = 0.0; \
493 m[0][3] = 0.0; \
494 \
495 m[1][0] = 0.0; \
496 m[1][1] = 0.0; \
497 m[1][2] = 0.0; \
498 m[1][3] = 0.0; \
499 \
500 m[2][0] = 0.0; \
501 m[2][1] = 0.0; \
502 m[2][2] = 0.0; \
503 m[2][3] = 0.0; \
504 \
505 m[3][0] = 0.0; \
506 m[3][1] = 0.0; \
507 m[3][2] = 0.0; \
508 m[3][3] = 0.0; \
509}\
510
512#define ROTX_CS(m,cosine,sine) \
513{ \
514 /* rotation about the x-axis */ \
515 \
516 m[0][0] = 1.0; \
517 m[0][1] = 0.0; \
518 m[0][2] = 0.0; \
519 m[0][3] = 0.0; \
520 \
521 m[1][0] = 0.0; \
522 m[1][1] = (cosine); \
523 m[1][2] = (sine); \
524 m[1][3] = 0.0; \
525 \
526 m[2][0] = 0.0; \
527 m[2][1] = -(sine); \
528 m[2][2] = (cosine); \
529 m[2][3] = 0.0; \
530 \
531 m[3][0] = 0.0; \
532 m[3][1] = 0.0; \
533 m[3][2] = 0.0; \
534 m[3][3] = 1.0; \
535}\
536
538#define ROTY_CS(m,cosine,sine) \
539{ \
540 /* rotation about the y-axis */ \
541 \
542 m[0][0] = (cosine); \
543 m[0][1] = 0.0; \
544 m[0][2] = -(sine); \
545 m[0][3] = 0.0; \
546 \
547 m[1][0] = 0.0; \
548 m[1][1] = 1.0; \
549 m[1][2] = 0.0; \
550 m[1][3] = 0.0; \
551 \
552 m[2][0] = (sine); \
553 m[2][1] = 0.0; \
554 m[2][2] = (cosine); \
555 m[2][3] = 0.0; \
556 \
557 m[3][0] = 0.0; \
558 m[3][1] = 0.0; \
559 m[3][2] = 0.0; \
560 m[3][3] = 1.0; \
561}\
562
564#define ROTZ_CS(m,cosine,sine) \
565{ \
566 /* rotation about the z-axis */ \
567 \
568 m[0][0] = (cosine); \
569 m[0][1] = (sine); \
570 m[0][2] = 0.0; \
571 m[0][3] = 0.0; \
572 \
573 m[1][0] = -(sine); \
574 m[1][1] = (cosine); \
575 m[1][2] = 0.0; \
576 m[1][3] = 0.0; \
577 \
578 m[2][0] = 0.0; \
579 m[2][1] = 0.0; \
580 m[2][2] = 1.0; \
581 m[2][3] = 0.0; \
582 \
583 m[3][0] = 0.0; \
584 m[3][1] = 0.0; \
585 m[3][2] = 0.0; \
586 m[3][3] = 1.0; \
587}\
588
590#define COPY_MATRIX_2X2(b,a) \
591{ \
592 b[0][0] = a[0][0]; \
593 b[0][1] = a[0][1]; \
594 \
595 b[1][0] = a[1][0]; \
596 b[1][1] = a[1][1]; \
597 \
598}\
599
600
602#define COPY_MATRIX_2X3(b,a) \
603{ \
604 b[0][0] = a[0][0]; \
605 b[0][1] = a[0][1]; \
606 b[0][2] = a[0][2]; \
607 \
608 b[1][0] = a[1][0]; \
609 b[1][1] = a[1][1]; \
610 b[1][2] = a[1][2]; \
611}\
612
613
615#define COPY_MATRIX_3X3(b,a) \
616{ \
617 b[0][0] = a[0][0]; \
618 b[0][1] = a[0][1]; \
619 b[0][2] = a[0][2]; \
620 \
621 b[1][0] = a[1][0]; \
622 b[1][1] = a[1][1]; \
623 b[1][2] = a[1][2]; \
624 \
625 b[2][0] = a[2][0]; \
626 b[2][1] = a[2][1]; \
627 b[2][2] = a[2][2]; \
628}\
629
630
632#define COPY_MATRIX_4X4(b,a) \
633{ \
634 b[0][0] = a[0][0]; \
635 b[0][1] = a[0][1]; \
636 b[0][2] = a[0][2]; \
637 b[0][3] = a[0][3]; \
638 \
639 b[1][0] = a[1][0]; \
640 b[1][1] = a[1][1]; \
641 b[1][2] = a[1][2]; \
642 b[1][3] = a[1][3]; \
643 \
644 b[2][0] = a[2][0]; \
645 b[2][1] = a[2][1]; \
646 b[2][2] = a[2][2]; \
647 b[2][3] = a[2][3]; \
648 \
649 b[3][0] = a[3][0]; \
650 b[3][1] = a[3][1]; \
651 b[3][2] = a[3][2]; \
652 b[3][3] = a[3][3]; \
653}\
654
655
657#define TRANSPOSE_MATRIX_2X2(b,a) \
658{ \
659 b[0][0] = a[0][0]; \
660 b[0][1] = a[1][0]; \
661 \
662 b[1][0] = a[0][1]; \
663 b[1][1] = a[1][1]; \
664}\
665
666
668#define TRANSPOSE_MATRIX_3X3(b,a) \
669{ \
670 b[0][0] = a[0][0]; \
671 b[0][1] = a[1][0]; \
672 b[0][2] = a[2][0]; \
673 \
674 b[1][0] = a[0][1]; \
675 b[1][1] = a[1][1]; \
676 b[1][2] = a[2][1]; \
677 \
678 b[2][0] = a[0][2]; \
679 b[2][1] = a[1][2]; \
680 b[2][2] = a[2][2]; \
681}\
682
683
685#define TRANSPOSE_MATRIX_4X4(b,a) \
686{ \
687 b[0][0] = a[0][0]; \
688 b[0][1] = a[1][0]; \
689 b[0][2] = a[2][0]; \
690 b[0][3] = a[3][0]; \
691 \
692 b[1][0] = a[0][1]; \
693 b[1][1] = a[1][1]; \
694 b[1][2] = a[2][1]; \
695 b[1][3] = a[3][1]; \
696 \
697 b[2][0] = a[0][2]; \
698 b[2][1] = a[1][2]; \
699 b[2][2] = a[2][2]; \
700 b[2][3] = a[3][2]; \
701 \
702 b[3][0] = a[0][3]; \
703 b[3][1] = a[1][3]; \
704 b[3][2] = a[2][3]; \
705 b[3][3] = a[3][3]; \
706}\
707
708
710#define SCALE_MATRIX_2X2(b,s,a) \
711{ \
712 b[0][0] = (s) * a[0][0]; \
713 b[0][1] = (s) * a[0][1]; \
714 \
715 b[1][0] = (s) * a[1][0]; \
716 b[1][1] = (s) * a[1][1]; \
717}\
718
719
721#define SCALE_MATRIX_3X3(b,s,a) \
722{ \
723 b[0][0] = (s) * a[0][0]; \
724 b[0][1] = (s) * a[0][1]; \
725 b[0][2] = (s) * a[0][2]; \
726 \
727 b[1][0] = (s) * a[1][0]; \
728 b[1][1] = (s) * a[1][1]; \
729 b[1][2] = (s) * a[1][2]; \
730 \
731 b[2][0] = (s) * a[2][0]; \
732 b[2][1] = (s) * a[2][1]; \
733 b[2][2] = (s) * a[2][2]; \
734}\
735
736
738#define SCALE_MATRIX_4X4(b,s,a) \
739{ \
740 b[0][0] = (s) * a[0][0]; \
741 b[0][1] = (s) * a[0][1]; \
742 b[0][2] = (s) * a[0][2]; \
743 b[0][3] = (s) * a[0][3]; \
744 \
745 b[1][0] = (s) * a[1][0]; \
746 b[1][1] = (s) * a[1][1]; \
747 b[1][2] = (s) * a[1][2]; \
748 b[1][3] = (s) * a[1][3]; \
749 \
750 b[2][0] = (s) * a[2][0]; \
751 b[2][1] = (s) * a[2][1]; \
752 b[2][2] = (s) * a[2][2]; \
753 b[2][3] = (s) * a[2][3]; \
754 \
755 b[3][0] = s * a[3][0]; \
756 b[3][1] = s * a[3][1]; \
757 b[3][2] = s * a[3][2]; \
758 b[3][3] = s * a[3][3]; \
759}\
760
761
763#define SCALE_VEC_MATRIX_2X2(b,svec,a) \
764{ \
765 b[0][0] = svec[0] * a[0][0]; \
766 b[1][0] = svec[0] * a[1][0]; \
767 \
768 b[0][1] = svec[1] * a[0][1]; \
769 b[1][1] = svec[1] * a[1][1]; \
770}\
771
772
774#define SCALE_VEC_MATRIX_3X3(b,svec,a) \
775{ \
776 b[0][0] = svec[0] * a[0][0]; \
777 b[1][0] = svec[0] * a[1][0]; \
778 b[2][0] = svec[0] * a[2][0]; \
779 \
780 b[0][1] = svec[1] * a[0][1]; \
781 b[1][1] = svec[1] * a[1][1]; \
782 b[2][1] = svec[1] * a[2][1]; \
783 \
784 b[0][2] = svec[2] * a[0][2]; \
785 b[1][2] = svec[2] * a[1][2]; \
786 b[2][2] = svec[2] * a[2][2]; \
787}\
788
789
791#define SCALE_VEC_MATRIX_4X4(b,svec,a) \
792{ \
793 b[0][0] = svec[0] * a[0][0]; \
794 b[1][0] = svec[0] * a[1][0]; \
795 b[2][0] = svec[0] * a[2][0]; \
796 b[3][0] = svec[0] * a[3][0]; \
797 \
798 b[0][1] = svec[1] * a[0][1]; \
799 b[1][1] = svec[1] * a[1][1]; \
800 b[2][1] = svec[1] * a[2][1]; \
801 b[3][1] = svec[1] * a[3][1]; \
802 \
803 b[0][2] = svec[2] * a[0][2]; \
804 b[1][2] = svec[2] * a[1][2]; \
805 b[2][2] = svec[2] * a[2][2]; \
806 b[3][2] = svec[2] * a[3][2]; \
807 \
808 b[0][3] = svec[3] * a[0][3]; \
809 b[1][3] = svec[3] * a[1][3]; \
810 b[2][3] = svec[3] * a[2][3]; \
811 b[3][3] = svec[3] * a[3][3]; \
812}\
813
814
816#define ACCUM_SCALE_MATRIX_2X2(b,s,a) \
817{ \
818 b[0][0] += (s) * a[0][0]; \
819 b[0][1] += (s) * a[0][1]; \
820 \
821 b[1][0] += (s) * a[1][0]; \
822 b[1][1] += (s) * a[1][1]; \
823}\
824
825
827#define ACCUM_SCALE_MATRIX_3X3(b,s,a) \
828{ \
829 b[0][0] += (s) * a[0][0]; \
830 b[0][1] += (s) * a[0][1]; \
831 b[0][2] += (s) * a[0][2]; \
832 \
833 b[1][0] += (s) * a[1][0]; \
834 b[1][1] += (s) * a[1][1]; \
835 b[1][2] += (s) * a[1][2]; \
836 \
837 b[2][0] += (s) * a[2][0]; \
838 b[2][1] += (s) * a[2][1]; \
839 b[2][2] += (s) * a[2][2]; \
840}\
841
842
844#define ACCUM_SCALE_MATRIX_4X4(b,s,a) \
845{ \
846 b[0][0] += (s) * a[0][0]; \
847 b[0][1] += (s) * a[0][1]; \
848 b[0][2] += (s) * a[0][2]; \
849 b[0][3] += (s) * a[0][3]; \
850 \
851 b[1][0] += (s) * a[1][0]; \
852 b[1][1] += (s) * a[1][1]; \
853 b[1][2] += (s) * a[1][2]; \
854 b[1][3] += (s) * a[1][3]; \
855 \
856 b[2][0] += (s) * a[2][0]; \
857 b[2][1] += (s) * a[2][1]; \
858 b[2][2] += (s) * a[2][2]; \
859 b[2][3] += (s) * a[2][3]; \
860 \
861 b[3][0] += (s) * a[3][0]; \
862 b[3][1] += (s) * a[3][1]; \
863 b[3][2] += (s) * a[3][2]; \
864 b[3][3] += (s) * a[3][3]; \
865}\
866
869#define MATRIX_PRODUCT_2X2(c,a,b) \
870{ \
871 c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]; \
872 c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]; \
873 \
874 c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]; \
875 c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]; \
876 \
877}\
878
881#define MATRIX_PRODUCT_3X3(c,a,b) \
882{ \
883 c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; \
884 c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; \
885 c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; \
886 \
887 c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; \
888 c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; \
889 c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; \
890 \
891 c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; \
892 c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; \
893 c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; \
894}\
895
896
899#define MATRIX_PRODUCT_4X4(c,a,b) \
900{ \
901 c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];\
902 c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];\
903 c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];\
904 c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];\
905 \
906 c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];\
907 c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];\
908 c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];\
909 c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];\
910 \
911 c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];\
912 c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];\
913 c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];\
914 c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];\
915 \
916 c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];\
917 c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];\
918 c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];\
919 c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];\
920}\
921
922
924#define MAT_DOT_VEC_2X2(p,m,v) \
925{ \
926 p[0] = m[0][0]*v[0] + m[0][1]*v[1]; \
927 p[1] = m[1][0]*v[0] + m[1][1]*v[1]; \
928}\
929
930
932#define MAT_DOT_VEC_3X3(p,m,v) \
933{ \
934 p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; \
935 p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; \
936 p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; \
937}\
938
939
943#define MAT_DOT_VEC_4X4(p,m,v) \
944{ \
945 p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]*v[3]; \
946 p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]*v[3]; \
947 p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]*v[3]; \
948 p[3] = m[3][0]*v[0] + m[3][1]*v[1] + m[3][2]*v[2] + m[3][3]*v[3]; \
949}\
950
956#define MAT_DOT_VEC_3X4(p,m,v) \
957{ \
958 p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2] + m[0][3]; \
959 p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2] + m[1][3]; \
960 p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2] + m[2][3]; \
961}\
962
963
966#define VEC_DOT_MAT_3X3(p,v,m) \
967{ \
968 p[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0]; \
969 p[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1]; \
970 p[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2]; \
971}\
972
973
977#define MAT_DOT_VEC_2X3(p,m,v) \
978{ \
979 p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]; \
980 p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]; \
981}\
982
984#define MAT_TRANSFORM_PLANE_4X4(pout,m,plane)\
985{ \
986 pout[0] = m[0][0]*plane[0] + m[0][1]*plane[1] + m[0][2]*plane[2];\
987 pout[1] = m[1][0]*plane[0] + m[1][1]*plane[1] + m[1][2]*plane[2];\
988 pout[2] = m[2][0]*plane[0] + m[2][1]*plane[1] + m[2][2]*plane[2];\
989 pout[3] = m[0][3]*pout[0] + m[1][3]*pout[1] + m[2][3]*pout[2] + plane[3];\
990}\
991
992
993
1003#define INV_TRANSP_MAT_DOT_VEC_2X2(p,m,v) \
1004{ \
1005 GREAL det; \
1006 \
1007 det = m[0][0]*m[1][1] - m[0][1]*m[1][0]; \
1008 p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
1009 p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
1010 \
1011 /* if matrix not singular, and not orthonormal, then renormalize */ \
1012 if ((det!=1.0f) && (det != 0.0f)) { \
1013 det = 1.0f / det; \
1014 p[0] *= det; \
1015 p[1] *= det; \
1016 } \
1017}\
1018
1019
1027#define NORM_XFORM_2X2(p,m,v) \
1028{ \
1029 GREAL len; \
1030 \
1031 /* do nothing if off-diagonals are zero and diagonals are \
1032 * equal */ \
1033 if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) { \
1034 p[0] = m[1][1]*v[0] - m[1][0]*v[1]; \
1035 p[1] = - m[0][1]*v[0] + m[0][0]*v[1]; \
1036 \
1037 len = p[0]*p[0] + p[1]*p[1]; \
1038 GIM_INV_SQRT(len,len); \
1039 p[0] *= len; \
1040 p[1] *= len; \
1041 } else { \
1042 VEC_COPY_2 (p, v); \
1043 } \
1044}\
1045
1046
1052#define OUTER_PRODUCT_2X2(m,v,t) \
1053{ \
1054 m[0][0] = v[0] * t[0]; \
1055 m[0][1] = v[0] * t[1]; \
1056 \
1057 m[1][0] = v[1] * t[0]; \
1058 m[1][1] = v[1] * t[1]; \
1059}\
1060
1061
1067#define OUTER_PRODUCT_3X3(m,v,t) \
1068{ \
1069 m[0][0] = v[0] * t[0]; \
1070 m[0][1] = v[0] * t[1]; \
1071 m[0][2] = v[0] * t[2]; \
1072 \
1073 m[1][0] = v[1] * t[0]; \
1074 m[1][1] = v[1] * t[1]; \
1075 m[1][2] = v[1] * t[2]; \
1076 \
1077 m[2][0] = v[2] * t[0]; \
1078 m[2][1] = v[2] * t[1]; \
1079 m[2][2] = v[2] * t[2]; \
1080}\
1081
1082
1088#define OUTER_PRODUCT_4X4(m,v,t) \
1089{ \
1090 m[0][0] = v[0] * t[0]; \
1091 m[0][1] = v[0] * t[1]; \
1092 m[0][2] = v[0] * t[2]; \
1093 m[0][3] = v[0] * t[3]; \
1094 \
1095 m[1][0] = v[1] * t[0]; \
1096 m[1][1] = v[1] * t[1]; \
1097 m[1][2] = v[1] * t[2]; \
1098 m[1][3] = v[1] * t[3]; \
1099 \
1100 m[2][0] = v[2] * t[0]; \
1101 m[2][1] = v[2] * t[1]; \
1102 m[2][2] = v[2] * t[2]; \
1103 m[2][3] = v[2] * t[3]; \
1104 \
1105 m[3][0] = v[3] * t[0]; \
1106 m[3][1] = v[3] * t[1]; \
1107 m[3][2] = v[3] * t[2]; \
1108 m[3][3] = v[3] * t[3]; \
1109}\
1110
1111
1117#define ACCUM_OUTER_PRODUCT_2X2(m,v,t) \
1118{ \
1119 m[0][0] += v[0] * t[0]; \
1120 m[0][1] += v[0] * t[1]; \
1121 \
1122 m[1][0] += v[1] * t[0]; \
1123 m[1][1] += v[1] * t[1]; \
1124}\
1125
1126
1132#define ACCUM_OUTER_PRODUCT_3X3(m,v,t) \
1133{ \
1134 m[0][0] += v[0] * t[0]; \
1135 m[0][1] += v[0] * t[1]; \
1136 m[0][2] += v[0] * t[2]; \
1137 \
1138 m[1][0] += v[1] * t[0]; \
1139 m[1][1] += v[1] * t[1]; \
1140 m[1][2] += v[1] * t[2]; \
1141 \
1142 m[2][0] += v[2] * t[0]; \
1143 m[2][1] += v[2] * t[1]; \
1144 m[2][2] += v[2] * t[2]; \
1145}\
1146
1147
1153#define ACCUM_OUTER_PRODUCT_4X4(m,v,t) \
1154{ \
1155 m[0][0] += v[0] * t[0]; \
1156 m[0][1] += v[0] * t[1]; \
1157 m[0][2] += v[0] * t[2]; \
1158 m[0][3] += v[0] * t[3]; \
1159 \
1160 m[1][0] += v[1] * t[0]; \
1161 m[1][1] += v[1] * t[1]; \
1162 m[1][2] += v[1] * t[2]; \
1163 m[1][3] += v[1] * t[3]; \
1164 \
1165 m[2][0] += v[2] * t[0]; \
1166 m[2][1] += v[2] * t[1]; \
1167 m[2][2] += v[2] * t[2]; \
1168 m[2][3] += v[2] * t[3]; \
1169 \
1170 m[3][0] += v[3] * t[0]; \
1171 m[3][1] += v[3] * t[1]; \
1172 m[3][2] += v[3] * t[2]; \
1173 m[3][3] += v[3] * t[3]; \
1174}\
1175
1176
1181#define DETERMINANT_2X2(d,m) \
1182{ \
1183 d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
1184}\
1185
1186
1191#define DETERMINANT_3X3(d,m) \
1192{ \
1193 d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); \
1194 d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); \
1195 d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); \
1196}\
1197
1198
1202#define COFACTOR_4X4_IJ(fac,m,i,j) \
1203{ \
1204 GUINT __ii[4], __jj[4], __k; \
1205 \
1206 for (__k=0; __k<i; __k++) __ii[__k] = __k; \
1207 for (__k=i; __k<3; __k++) __ii[__k] = __k+1; \
1208 for (__k=0; __k<j; __k++) __jj[__k] = __k; \
1209 for (__k=j; __k<3; __k++) __jj[__k] = __k+1; \
1210 \
1211 (fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[2]] \
1212 - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[1]]); \
1213 (fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[2]] \
1214 - m[__ii[1]][__jj[2]]*m[__ii[2]][__jj[0]]);\
1215 (fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]]*m[__ii[2]][__jj[1]] \
1216 - m[__ii[1]][__jj[1]]*m[__ii[2]][__jj[0]]);\
1217 \
1218 __k = i+j; \
1219 if ( __k != (__k/2)*2) { \
1220 (fac) = -(fac); \
1221 } \
1222}\
1223
1224
1229#define DETERMINANT_4X4(d,m) \
1230{ \
1231 GREAL cofac; \
1232 COFACTOR_4X4_IJ (cofac, m, 0, 0); \
1233 d = m[0][0] * cofac; \
1234 COFACTOR_4X4_IJ (cofac, m, 0, 1); \
1235 d += m[0][1] * cofac; \
1236 COFACTOR_4X4_IJ (cofac, m, 0, 2); \
1237 d += m[0][2] * cofac; \
1238 COFACTOR_4X4_IJ (cofac, m, 0, 3); \
1239 d += m[0][3] * cofac; \
1240}\
1241
1242
1247#define COFACTOR_2X2(a,m) \
1248{ \
1249 a[0][0] = (m)[1][1]; \
1250 a[0][1] = - (m)[1][0]; \
1251 a[1][0] = - (m)[0][1]; \
1252 a[1][1] = (m)[0][0]; \
1253}\
1254
1255
1260#define COFACTOR_3X3(a,m) \
1261{ \
1262 a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
1263 a[0][1] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
1264 a[0][2] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
1265 a[1][0] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
1266 a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
1267 a[1][2] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
1268 a[2][0] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
1269 a[2][1] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
1270 a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
1271}\
1272
1273
1278#define COFACTOR_4X4(a,m) \
1279{ \
1280 int i,j; \
1281 \
1282 for (i=0; i<4; i++) { \
1283 for (j=0; j<4; j++) { \
1284 COFACTOR_4X4_IJ (a[i][j], m, i, j); \
1285 } \
1286 } \
1287}\
1288
1289
1295#define ADJOINT_2X2(a,m) \
1296{ \
1297 a[0][0] = (m)[1][1]; \
1298 a[1][0] = - (m)[1][0]; \
1299 a[0][1] = - (m)[0][1]; \
1300 a[1][1] = (m)[0][0]; \
1301}\
1302
1303
1309#define ADJOINT_3X3(a,m) \
1310{ \
1311 a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; \
1312 a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); \
1313 a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; \
1314 a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); \
1315 a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; \
1316 a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); \
1317 a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; \
1318 a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); \
1319 a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
1320}\
1321
1322
1328#define ADJOINT_4X4(a,m) \
1329{ \
1330 char _i_,_j_; \
1331 \
1332 for (_i_=0; _i_<4; _i_++) { \
1333 for (_j_=0; _j_<4; _j_++) { \
1334 COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
1335 } \
1336 } \
1337}\
1338
1339
1344#define SCALE_ADJOINT_2X2(a,s,m) \
1345{ \
1346 a[0][0] = (s) * m[1][1]; \
1347 a[1][0] = - (s) * m[1][0]; \
1348 a[0][1] = - (s) * m[0][1]; \
1349 a[1][1] = (s) * m[0][0]; \
1350}\
1351
1352
1357#define SCALE_ADJOINT_3X3(a,s,m) \
1358{ \
1359 a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
1360 a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
1361 a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
1362 \
1363 a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
1364 a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
1365 a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
1366 \
1367 a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
1368 a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
1369 a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
1370}\
1371
1372
1377#define SCALE_ADJOINT_4X4(a,s,m) \
1378{ \
1379 char _i_,_j_; \
1380 for (_i_=0; _i_<4; _i_++) { \
1381 for (_j_=0; _j_<4; _j_++) { \
1382 COFACTOR_4X4_IJ (a[_j_][_i_], m, _i_, _j_); \
1383 a[_j_][_i_] *= s; \
1384 } \
1385 } \
1386}\
1387
1393#define INVERT_2X2(b,det,a) \
1394{ \
1395 GREAL _tmp_; \
1396 DETERMINANT_2X2 (det, a); \
1397 _tmp_ = 1.0 / (det); \
1398 SCALE_ADJOINT_2X2 (b, _tmp_, a); \
1399}\
1400
1401
1407#define INVERT_3X3(b,det,a) \
1408{ \
1409 GREAL _tmp_; \
1410 DETERMINANT_3X3 (det, a); \
1411 _tmp_ = 1.0 / (det); \
1412 SCALE_ADJOINT_3X3 (b, _tmp_, a); \
1413}\
1414
1415
1421#define INVERT_4X4(b,det,a) \
1422{ \
1423 GREAL _tmp_; \
1424 DETERMINANT_4X4 (det, a); \
1425 _tmp_ = 1.0 / (det); \
1426 SCALE_ADJOINT_4X4 (b, _tmp_, a); \
1427}\
1428
1430#define MAT_GET_ROW(mat,vec3,rowindex)\
1431{\
1432 vec3[0] = mat[rowindex][0];\
1433 vec3[1] = mat[rowindex][1];\
1434 vec3[2] = mat[rowindex][2]; \
1435}\
1436
1438#define MAT_GET_ROW2(mat,vec2,rowindex)\
1439{\
1440 vec2[0] = mat[rowindex][0];\
1441 vec2[1] = mat[rowindex][1];\
1442}\
1443
1444
1446#define MAT_GET_ROW4(mat,vec4,rowindex)\
1447{\
1448 vec4[0] = mat[rowindex][0];\
1449 vec4[1] = mat[rowindex][1];\
1450 vec4[2] = mat[rowindex][2];\
1451 vec4[3] = mat[rowindex][3];\
1452}\
1453
1455#define MAT_GET_COL(mat,vec3,colindex)\
1456{\
1457 vec3[0] = mat[0][colindex];\
1458 vec3[1] = mat[1][colindex];\
1459 vec3[2] = mat[2][colindex]; \
1460}\
1461
1463#define MAT_GET_COL2(mat,vec2,colindex)\
1464{\
1465 vec2[0] = mat[0][colindex];\
1466 vec2[1] = mat[1][colindex];\
1467}\
1468
1469
1471#define MAT_GET_COL4(mat,vec4,colindex)\
1472{\
1473 vec4[0] = mat[0][colindex];\
1474 vec4[1] = mat[1][colindex];\
1475 vec4[2] = mat[2][colindex];\
1476 vec4[3] = mat[3][colindex];\
1477}\
1478
1480#define MAT_GET_X(mat,vec3)\
1481{\
1482 MAT_GET_COL(mat,vec3,0);\
1483}\
1484
1486#define MAT_GET_Y(mat,vec3)\
1487{\
1488 MAT_GET_COL(mat,vec3,1);\
1489}\
1490
1492#define MAT_GET_Z(mat,vec3)\
1493{\
1494 MAT_GET_COL(mat,vec3,2);\
1495}\
1496
1497
1499#define MAT_SET_X(mat,vec3)\
1500{\
1501 mat[0][0] = vec3[0];\
1502 mat[1][0] = vec3[1];\
1503 mat[2][0] = vec3[2];\
1504}\
1505
1507#define MAT_SET_Y(mat,vec3)\
1508{\
1509 mat[0][1] = vec3[0];\
1510 mat[1][1] = vec3[1];\
1511 mat[2][1] = vec3[2];\
1512}\
1513
1515#define MAT_SET_Z(mat,vec3)\
1516{\
1517 mat[0][2] = vec3[0];\
1518 mat[1][2] = vec3[1];\
1519 mat[2][2] = vec3[2];\
1520}\
1521
1522
1524#define MAT_GET_TRANSLATION(mat,vec3)\
1525{\
1526 vec3[0] = mat[0][3];\
1527 vec3[1] = mat[1][3];\
1528 vec3[2] = mat[2][3]; \
1529}\
1530
1532#define MAT_SET_TRANSLATION(mat,vec3)\
1533{\
1534 mat[0][3] = vec3[0];\
1535 mat[1][3] = vec3[1];\
1536 mat[2][3] = vec3[2]; \
1537}\
1538
1539
1540
1542#define MAT_DOT_ROW(mat,vec3,rowindex) (vec3[0]*mat[rowindex][0] + vec3[1]*mat[rowindex][1] + vec3[2]*mat[rowindex][2])
1543
1545#define MAT_DOT_ROW2(mat,vec2,rowindex) (vec2[0]*mat[rowindex][0] + vec2[1]*mat[rowindex][1])
1546
1548#define MAT_DOT_ROW4(mat,vec4,rowindex) (vec4[0]*mat[rowindex][0] + vec4[1]*mat[rowindex][1] + vec4[2]*mat[rowindex][2] + vec4[3]*mat[rowindex][3])
1549
1550
1552#define MAT_DOT_COL(mat,vec3,colindex) (vec3[0]*mat[0][colindex] + vec3[1]*mat[1][colindex] + vec3[2]*mat[2][colindex])
1553
1555#define MAT_DOT_COL2(mat,vec2,colindex) (vec2[0]*mat[0][colindex] + vec2[1]*mat[1][colindex])
1556
1558#define MAT_DOT_COL4(mat,vec4,colindex) (vec4[0]*mat[0][colindex] + vec4[1]*mat[1][colindex] + vec4[2]*mat[2][colindex] + vec4[3]*mat[3][colindex])
1559
1564#define INV_MAT_DOT_VEC_3X3(p,m,v) \
1565{ \
1566 p[0] = MAT_DOT_COL(m,v,0); \
1567 p[1] = MAT_DOT_COL(m,v,1); \
1568 p[2] = MAT_DOT_COL(m,v,2); \
1569}\
1570
1571
1572
1573#endif // GIM_VECTOR_H_INCLUDED