Bullet Collision Detection & Physics Library
btGeometryUtil.cpp
Go to the documentation of this file.
1/*
2Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
3
4This software is provided 'as-is', without any express or implied warranty.
5In no event will the authors be held liable for any damages arising from the use of this software.
6Permission is granted to anyone to use this software for any purpose,
7including commercial applications, and to alter it and redistribute it freely,
8subject to the following restrictions:
9
101. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
112. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
123. This notice may not be removed or altered from any source distribution.
13*/
14
15
16
17#include "btGeometryUtil.h"
18
19
20/*
21 Make sure this dummy function never changes so that it
22 can be used by probes that are checking whether the
23 library is actually installed.
24*/
25extern "C"
26{
27 void btBulletMathProbe ();
28
30}
31
32
34{
35 int numbrushes = planeEquations.size();
36 for (int i=0;i<numbrushes;i++)
37 {
38 const btVector3& N1 = planeEquations[i];
39 btScalar dist = btScalar(N1.dot(point))+btScalar(N1[3])-margin;
40 if (dist>btScalar(0.))
41 {
42 return false;
43 }
44 }
45 return true;
46
47}
48
49
51{
52 int numvertices = vertices.size();
53 for (int i=0;i<numvertices;i++)
54 {
55 const btVector3& N1 = vertices[i];
56 btScalar dist = btScalar(planeNormal.dot(N1))+btScalar(planeNormal[3])-margin;
57 if (dist>btScalar(0.))
58 {
59 return false;
60 }
61 }
62 return true;
63}
64
65bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations);
66
67bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations)
68{
69 int numbrushes = planeEquations.size();
70 for (int i=0;i<numbrushes;i++)
71 {
72 const btVector3& N1 = planeEquations[i];
73 if (planeEquation.dot(N1) > btScalar(0.999))
74 {
75 return false;
76 }
77 }
78 return true;
79}
80
82{
83 const int numvertices = vertices.size();
84 // brute force:
85 for (int i=0;i<numvertices;i++)
86 {
87 const btVector3& N1 = vertices[i];
88
89
90 for (int j=i+1;j<numvertices;j++)
91 {
92 const btVector3& N2 = vertices[j];
93
94 for (int k=j+1;k<numvertices;k++)
95 {
96
97 const btVector3& N3 = vertices[k];
98
99 btVector3 planeEquation,edge0,edge1;
100 edge0 = N2-N1;
101 edge1 = N3-N1;
102 btScalar normalSign = btScalar(1.);
103 for (int ww=0;ww<2;ww++)
104 {
105 planeEquation = normalSign * edge0.cross(edge1);
106 if (planeEquation.length2() > btScalar(0.0001))
107 {
108 planeEquation.normalize();
109 if (notExist(planeEquation,planeEquationsOut))
110 {
111 planeEquation[3] = -planeEquation.dot(N1);
112
113 //check if inside, and replace supportingVertexOut if needed
114 if (areVerticesBehindPlane(planeEquation,vertices,btScalar(0.01)))
115 {
116 planeEquationsOut.push_back(planeEquation);
117 }
118 }
119 }
120 normalSign = btScalar(-1.);
121 }
122
123 }
124 }
125 }
126
127}
128
130{
131 const int numbrushes = planeEquations.size();
132 // brute force:
133 for (int i=0;i<numbrushes;i++)
134 {
135 const btVector3& N1 = planeEquations[i];
136
137
138 for (int j=i+1;j<numbrushes;j++)
139 {
140 const btVector3& N2 = planeEquations[j];
141
142 for (int k=j+1;k<numbrushes;k++)
143 {
144
145 const btVector3& N3 = planeEquations[k];
146
147 btVector3 n2n3; n2n3 = N2.cross(N3);
148 btVector3 n3n1; n3n1 = N3.cross(N1);
149 btVector3 n1n2; n1n2 = N1.cross(N2);
150
151 if ( ( n2n3.length2() > btScalar(0.0001) ) &&
152 ( n3n1.length2() > btScalar(0.0001) ) &&
153 ( n1n2.length2() > btScalar(0.0001) ) )
154 {
155 //point P out of 3 plane equations:
156
157 // d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
158 //P = -------------------------------------------------------------------------
159 // N1 . ( N2 * N3 )
160
161
162 btScalar quotient = (N1.dot(n2n3));
163 if (btFabs(quotient) > btScalar(0.000001))
164 {
165 quotient = btScalar(-1.) / quotient;
166 n2n3 *= N1[3];
167 n3n1 *= N2[3];
168 n1n2 *= N3[3];
169 btVector3 potentialVertex = n2n3;
170 potentialVertex += n3n1;
171 potentialVertex += n1n2;
172 potentialVertex *= quotient;
173
174 //check if inside, and replace supportingVertexOut if needed
175 if (isPointInsidePlanes(planeEquations,potentialVertex,btScalar(0.01)))
176 {
177 verticesOut.push_back(potentialVertex);
178 }
179 }
180 }
181 }
182 }
183 }
184}
185
bool notExist(const btVector3 &planeEquation, const btAlignedObjectArray< btVector3 > &planeEquations)
void btBulletMathProbe()
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
btScalar btFabs(btScalar x)
Definition: btScalar.h:475
int size() const
return the number of elements in the array
void push_back(const T &_Val)
static void getVerticesFromPlaneEquations(const btAlignedObjectArray< btVector3 > &planeEquations, btAlignedObjectArray< btVector3 > &verticesOut)
static bool areVerticesBehindPlane(const btVector3 &planeNormal, const btAlignedObjectArray< btVector3 > &vertices, btScalar margin)
static void getPlaneEquationsFromVertices(btAlignedObjectArray< btVector3 > &vertices, btAlignedObjectArray< btVector3 > &planeEquationsOut)
static bool isPointInsidePlanes(const btAlignedObjectArray< btVector3 > &planeEquations, const btVector3 &point, btScalar margin)
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:84
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
Definition: btVector3.h:389
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:235
btScalar length2() const
Return the length of the vector squared.
Definition: btVector3.h:257
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
Definition: btVector3.h:309