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1 Introduction

The Cufflinks algorithm takes as input a reference
genome and a set of single or paired end alignments
of RNA-Seq reads and reports as output a set of mes-
senger RNA (transcript) sequences along with esti-
mates of their relative abundances in the input sam-
ple. The algorithm is a direct extension of an algo-
rithm that performs haplotype frequency estimation
in viral populations [1]. Much of what appears here is
copied verbatim from that paper to make the presen-
tation of the extensions more clear. Both algorithms
report a parsimonious set of assembled sequences that
are consistent with the alignments, and assign reads
to the assembled sequences using a maximum likeli-
hood step. When the algorithm terminates, a max-
imal number of reads are assigned to assembled se-
quences, and every assigned read is consistent with
the sequence to which it is assigned.

The Cufflinks algorithm extends the ShoRHA algo-
rithm in [1] in several ways. First, ShoRAH assumes
that the reads are unpaired, and align to the reference
without gaps. Cufllinks handles reads that aligned
over splice junctions, and reads that are paired. Sec-
ond, ShoRHA assumes that the haplotypes are the
same length and are syntenic. Cufflinks assembles a
diverse set of sequences, corresponding to transcripts
that are generally not the same length. Third, Cuf-
flinks can integrate annotations seamlessly to produce
its assemblies, increasing its effectiveness in regions of
relatively low read coverage.

2 Algorithm

We describe the algorithm to comparatively assemble
paired-end read alignments into transcripts in this
section. Discussion of how to assemble single-end
alignments, or mixtures of single- and paired-ends is
omitted, but is believed to be straightforward with
minor extensions to this algorithm. The first step in
the algorithm computes a minimal set of transcript

sequences needed to explain the reads. The second
step estimates the relative abundances of those tran-
scripts in the input via a maximum-likelihood calcu-
lation.

Let M be the paired-end reads alignments or
mate alignments provided as input to the algorithm.
Each mate alignment consists of two read alignments,
which each consist of an offset into the reference and a
sequence of CIGAR operations. We restrict ourselves
to the ‘match’ and ‘skip’ operations. Match opera-
tions simply denote a contiguous interval in the align-
ment (i.e. a region of alignments that contains exact
base matches and substitutions, but no gaps). Skip
operations denote a (often intron-sized) gap in the
alignment. For a mate alignment m, we denote the
read alignment with the lower offset into the reference
as the “left” read alignment, my,, and the larger offset
alignment the “right” read alignment, mpg. Also, we
write the lowest-offset base in the reference covered
by m as m;, and the highest-offset base as m,..

Definition 1. Two mate alignments = and y are said
to overlap if the intervals [x;, z,] and [y, y.] intersect.

An overlapping pair of mate alignments is consis-
tent if they do not “disagree” about the locations
and lengths of their implied introns (if any) and
could have come from the same transcript. A pair
of overlapping read alignments “intron-agree” on in-
trons only if the computed offsets of the CIGAR skip
operations are identical for both alignments. A pair
of read alignments that do mot overlap are said to
vacuously agree.

The RNA-Seq protocol usually specifies randomly
fragmenting cDNA and then size-selecting fragments.
Each fragment or insert is sequenced for a fixed num-
ber of cycles from both ends, resulting in a pair
of reads separated in the transcriptome coordinate
space by a length following a generally well behaved
(and presumed to be normal) distribution. Consider
a pair of mates x and y that overlap such that part
of a read alignment from y falls within the genomic



interval in between the read alignments of x. Call
this part of y’s read alignment y+*, and denote its
length [,,. If x and y are from the same transcript,
then the (unknown) part of the transcript between
z’s read alignments must contain y* as a substring.
Thus the distance between z’s read alignments in the
transcriptome coordinate space must be at least [,.
If the cumulative distribution function of the insert
length distribution is F'(d), then the probability that
the transcriptomic inner distance x is at least [y, is
1 — F(ly.). For some probability threshold ¢, we say
x “distance-agrees” with y if:

1— F(l,,) >t

Note that the binary relation of distance-agreement
is not generally symmetric

Definition 2. A pair of overlapping mate alignments
x and y are consistent only if the following are both
true:

1. xp intron-agrees with y; and xpr intron-agrees
with yg.

2. x distance-agrees with y and y distance-agrees
with z with some probability threshold t.

A given transcript is called completely consistent
with the input set of mate alignments M if its se-
quence can be constructed from a subset of M, where
any mates in the subset that overlap are consistent.
Let C)js be the set of all transcripts constructible from
subsequences (by concatenation) of the reference and
that are completely consistent with M. What fol-
lows are methods for constructing and sampling C),
necessary for computing a minimal set of transcripts
necessary to explain the mates in M.

Definition 3. The mate graph Gj; associated
with M is a directed, acyclic graph with vertices
{Misr,s,t} consisting of a source s, a sink ¢, and a
vertex for each irredundant mate alignment. A mate
alignment is z redudant if it is overlapped by an-
other mate alignment y, x; intron-agrees with and
is contained by yr and xpr intron-agrees with and is
contained by yr. The edges of Gjs are defined by
including an edge from x to y when

1.y <y
2. = and y overlap consistently

3. there would not be a path from x to y in Gy
without this edge.

Finally, edges are added from the source vertex s to
any vertex in M;,.,. that lacks a “left overlap”, i.e.
a vertex for mate x where there is no overlapping,
consistent mate y with y; < x;. Edges are similarly
added from mates without right overlaps to the sink
vertex ¢.

A path through the mate graph corresponds to a
transcript that is completely consistent with M and
whose sequence can be constructed from overlaps im-
plied by the edges on the path. We say that a set
of transcript sequences 1" is an explaining set for M
if every mate alignment m € M, can be obtained as
a pair of substrings from a transcript in 7" separated
by a distance d that is less than two standard de-
viations from the mean of the inner distance length
distribution.

We want to compute a minimal explaining set of
transcripts that is completely consistent with our
mate alignments. The proposition on page four of
[1] implies that an explaining set of completely con-
sistent transcripts is precisely a set of paths from the
source to the sink, such that each vertex of the mate
graph is covered by at least one path. This amounts
to “explaining” each read by including it in a larger
assembly. Such a set of paths is called a cover, and
can be computed efficiently by the following theorem:

Dilworth’s Theorem. Given a mate graph:

1. Every minimal cover of the mate graph has the
same cardinality, namely the size of the largest
set QQ of wvertices such that there are no paths
between elements of Q.

2. A minimal cover of the mate graph can be com-
puted by solving a maximum matching problem
in an associated bipartite graph. This maching
problem can be solved in time at worst cubic in
the number of irredundant reads.

A minimal cover obtained from the maximum
matching algorithm is in general not unique. It pro-
vides a minimal chain decomposition of the graph. A
chain in a DAG is a set of vertices that all lie on at
least one common path from the source to the sink,
and can generally be extended to a number of dif-
ferent paths. Put another way, a chain is a set of
reads that are all comparable to each other accord-
ing to the partial ordering implied by the mate graph.
While this chain decomposition is also in general not
unique, the cardinality of the minimal cover is well-
defined, and is an important invariant of the set of
alignments. The cardinality of the minimal cover is a



lower bound on the number of transcripts needed to
explain the mate alignments.

2.1 Computing the minimal set of ex-
plaining transcripts

The algorithm to compute a minimal set of explaining
transcripts has four steps:

1. Construct the mate graph G, associate with M
2. Compute a minimal chain decomposition of G;.

3. Extend chains in the decomposition to paths
from the source to the sink in Gjy.

4. Output the transcript sequences corresponding
to the paths.

Step one is straightforward, and consists of sorting
the mate alignments by reference position, checking
for overlaps, and then checking for consistency be-
tween any overlapping pairs. It has worst case com-
plexity O(|M]?), but is likely to be fast for typical
inputs.

Step two begins by taking Gj; and building the
associated bipartite graph with a vertex for each mate
alignment, and an edge between mates x and y if
there is a path from x to y in Gp;. This amounts
to a transitive closure calculation on (s, which has
time complexity O(|V’||E’|), where here |V'| = 2| M|
and |E’| = |M|?. Thus this step is worst-case cubic.

After building the bipartite graph from the transi-
tive closure of Gy, the algorithm computes a minimal
chain decomposition on Gjp;. Dilworth’s Theorem
(http://en.wikipedia.org/wiki/Dilworth’s_theorem)
states that we can construct a minimal chain decom-
position from a maximum cardinality matching H
on the bipartite graph. A constructive proof, which
follows from Ko6nig’s Theorem, works by building an
antichain on G ;. An antichain here is a set of mate
alignments from Gj; where there is no path between
any two elements. After building the bipartite graph
as above, Konig’s Theorem says that there is a
matching H and a set of vertices C' in the bipartite
graph, such that each edge in the graph contains at
least one vertex in C' and such that H and C have
the same cardinality m. Let A be the set of mate
alignments that do not correspond to any vertex in
C; then A has at least |M| — |H| elements. Now
let P be a family of chains formed by including the
mate alignment for x and the mate alignment for y
in the same chain whenever there is an edge from a

vertex representing x to a vertex representing y in
the matching. P has |H|— |H| chains. Therefore, we
have constructed an antichain and a partition into
chains with the same cardinality.

In step three, the algorithm extends the chains in
the graph to paths from the source to the sink. Note
that while there is not necessarily a unique exten-
sion from a given chain to such a path, any set of
extensions of the chains to paths will yield a mini-
mal explaining set of transcripts for the reads. As
described in below, a path through G, corresponds
to a sequence of (possibly overlapping) read align-
ments of the mate alignments intermixed with regions
where the transcript sequence is unknown, but where
the length of the unknown sequence in the transcrip-
tome coordinate space can be estimated. Since any
set of path extensions will produce a minimal explain-
ing set, the algorithm choosing the one which mini-
mizes the amount unknown sequence in each path.
Since the paths form a cover of the mate alignments,
rather than a partition, this is essentially a trivial
optimization problem which can be solved optimally
with greedy, local choices during the path extension
step.

Step four takes paths generated by step three
and outputs the sequences for the transcripts con-
structible from them. Each path corresponds to a set
of consistent mate alignments, and each mate align-
ment consists of a pair of read alignments, each of
which has a CIGAR string. The algorithm produces
a single CIGAR string for the entire path, along with
a sequence for the path on which (along with the ref-
erence) the CIGAR string operates.

2.2 Transcript abundance estimation

We view an input mRNA sample as a probability
distribution on a set of transcripts. We want to esti-
mate this distribution from a set of observed paired-
end reads. Let T be the set of candidate transcripts.
Ideally, we would take T as the set of all possible
transcripts, but we must limit ourselves to a small
explaining set of transcripts. Using the set of tran-
scripts produced by the algorithm above will make
the abundance estimate feasible to calculate. Let M
be the set of possible mate alignments that are com-
patible with transcripts in T. Then we can write
the mate alignment observation data as a vector wu,
where u,, is the number of times we observed mate
alignment m.

The inference process is based on a statistical
model for the generation of paired-end reads from



an mRNA sample. We assume that read pairs are
generated as follows. First, a transcript ¢ is drawn at
random from the unknown probability distribution
p = (pt)ter- Next, a new mate m is generated from
t by first picking a left read alignment starting at my
at random from all positions in ¢. Then, a the end of
the right read alignment m, is generated by picking
a length from the distribution of insert lengths and
adding that length to m;. If the length would exceed
the end of the transcript, then a new length is picked
from the mate pair length distribution until a valid
mate pair is obtained. Estimating the structure of
the population is the problem of estimating p from
under this generative model.

Let T be the hidden random variable with values in
T that describes the transcript and M the observed
random variable over M for the mate pair. Then
the probability of observing mate pair m under this
model is

Pr(M =m) = ZptPr(M =m|T =1t)
teT

Where the conditional probability is taken as zero
if m is not consistent with ¢, and otherwise defined
as Pr(M = m||T =t) = (1/K)pi/(m, — m;), where
K is the length of ¢ and p; is the mate pair length
distribution, which we assume to normal and with a
given mean and variance.

The algorithm then estimates p by iteratively es-
timating the missing data w,,;, the number of times
mate alignment m originated from transcript t, by
maximizing the log-likelihood function of the hidden
model

Lnia(p1, - 0y1|) = Z Z Umilog(Pr(M = m|T =1t))

meM teT
In the E step, the expected values of the missing
data is computed as
ptPr(M =m|T =t)
Umt = Um
P(M =m)
In the M step, maximization of Lp;q yields

ﬁt = 727’”61\/[ Umt
ZmGM Um
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